Cargando…
Particle Swarm Optimization-Based Support Vector Regression for Tourist Arrivals Forecasting
The tourism industry has become one of the most important economic sectors for governments worldwide. Accurately forecasting tourism demand is crucial because it provides useful information to related industries and governments, enabling stakeholders to adjust plans and policies. To develop a foreca...
Autores principales: | Liu, Hsiou-Hsiang, Chang, Lung-Cheng, Li, Chien-Wei, Yang, Cheng-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169209/ https://www.ncbi.nlm.nih.gov/pubmed/30327666 http://dx.doi.org/10.1155/2018/6076475 |
Ejemplares similares
-
Classical Forecasting of International Tourist Arrivals to Thailand
por: Intarapak, Sukanya, et al.
Publicado: (2022) -
Support Vector Regression Based on the Particle Swarm
Optimization Algorithm for Tight Oil Recovery Prediction
por: Huang, Shihui, et al.
Publicado: (2021) -
Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators
por: Alwee, Razana, et al.
Publicado: (2013) -
Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction
por: Ghazvinian, Hamidreza, et al.
Publicado: (2019) -
Forecasting tourist arrivals by using the adaptive network-based fuzzy inference system
por: Chen, Miao-Sheng, et al.
Publicado: (2010)