Cargando…

Effect of Post-Cam Design for Normal Knee Joint Kinematic, Ligament, and Quadriceps Force in Patient-Specific Posterior-Stabilized Total Knee Arthroplasty by Using Finite Element Analysis

The purpose of this study is to investigate post-cam design via finite element analysis to evaluate the most normal-like knee mechanics. We developed five different three-dimensional computational models of customized posterior-stabilized (PS) total knee arthroplasty (TKA) involving identical surfac...

Descripción completa

Detalles Bibliográficos
Autores principales: Koh, Yong-Gon, Son, Juhyun, Kwon, Oh-Ryong, Kwon, Sae Kwang, Kang, Kyoung-Tak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169244/
https://www.ncbi.nlm.nih.gov/pubmed/30327775
http://dx.doi.org/10.1155/2018/2438980
Descripción
Sumario:The purpose of this study is to investigate post-cam design via finite element analysis to evaluate the most normal-like knee mechanics. We developed five different three-dimensional computational models of customized posterior-stabilized (PS) total knee arthroplasty (TKA) involving identical surfaces with the exception of the post-cam geometry. They include flat-and-flat, curve-and-curve (concave), curve-and-curve (concave and convex), helical, and asymmetrical post-cam designs. We compared the kinematics, collateral ligament force, and quadriceps force in the customized PS-TKA with five different post-cam designs and conventional PS-TKA to those of a normal knee under deep-knee-bend conditions. The results indicated that femoral rollback in curve-and-curve (concave) post-cam design exhibited the most normal-like knee kinematics, although the internal rotation was the closest to that of a normal knee in the helical post-cam design. The curve-and-curve (concave) post-cam design showed a femoral rollback of 4.4 mm less than the normal knee, and the helical post-cam design showed an internal rotation of 5.6° less than the normal knee. Lateral collateral ligament and quadriceps forces in curve-and-curve (concave) post-cam design, and medial collateral ligament forces in helical post-cam design were the closest to that of a normal knee. The curve-and-curve (concave) post-cam design showed 20% greater lateral collateral ligament force than normal knee, and helical post-cam design showed medial collateral ligament force 14% greater than normal knee. The results revealed the variation in each design that provided the most normal-like biomechanical effect. The present biomechanical data are expected to provide useful information to improve post-cam design to restore normal-like knee mechanics in customized PS-TKA.