Cargando…

An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics

The piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, Anopheles stephensi and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documen...

Descripción completa

Detalles Bibliográficos
Autores principales: Reid, William, Pilitt, Kristina, Alford, Robert, Cervantes-Medina, Adriana, Yu, Hao, Aluvihare, Channa, Harrell, Rob, O’Brochta, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169391/
https://www.ncbi.nlm.nih.gov/pubmed/30135106
http://dx.doi.org/10.1534/g3.118.200347
_version_ 1783360509411590144
author Reid, William
Pilitt, Kristina
Alford, Robert
Cervantes-Medina, Adriana
Yu, Hao
Aluvihare, Channa
Harrell, Rob
O’Brochta, David A.
author_facet Reid, William
Pilitt, Kristina
Alford, Robert
Cervantes-Medina, Adriana
Yu, Hao
Aluvihare, Channa
Harrell, Rob
O’Brochta, David A.
author_sort Reid, William
collection PubMed
description The piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, Anopheles stephensi and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documented, and 73 were further characterized at the DNA level to identify patterns in insertion site preferences, remobilization frequencies, and remobilization patterns. Overall, the use of the tetameric AmCyan reporter as the fusion peptide displayed a preference for insertion into the 5′-end of transcripts. Notably 183 – 44882 bp upstream of the An. stephensi v1.0 ab initio gene models, which demonstrated that the promoter regions for the genes of An. stephensi are further upstream of the 5′-proximal regions of the genes in the ab inito models than may be otherwise predicted. RNA-Seq transcript coverage supported the insertion of the splice acceptor gene trap element into 5′-UTR introns for nearly half of all insertions identified. The use of a gene trap element that prefers insertion into the 5′-end of genes supports the use of this technology for the random generation of knock-out mutants, as well as the experimental confirmation of 5′-UTR introns in An. stephensi.
format Online
Article
Text
id pubmed-6169391
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-61693912018-10-04 An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics Reid, William Pilitt, Kristina Alford, Robert Cervantes-Medina, Adriana Yu, Hao Aluvihare, Channa Harrell, Rob O’Brochta, David A. G3 (Bethesda) Mutant Screen Report The piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, Anopheles stephensi and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documented, and 73 were further characterized at the DNA level to identify patterns in insertion site preferences, remobilization frequencies, and remobilization patterns. Overall, the use of the tetameric AmCyan reporter as the fusion peptide displayed a preference for insertion into the 5′-end of transcripts. Notably 183 – 44882 bp upstream of the An. stephensi v1.0 ab initio gene models, which demonstrated that the promoter regions for the genes of An. stephensi are further upstream of the 5′-proximal regions of the genes in the ab inito models than may be otherwise predicted. RNA-Seq transcript coverage supported the insertion of the splice acceptor gene trap element into 5′-UTR introns for nearly half of all insertions identified. The use of a gene trap element that prefers insertion into the 5′-end of genes supports the use of this technology for the random generation of knock-out mutants, as well as the experimental confirmation of 5′-UTR introns in An. stephensi. Genetics Society of America 2018-08-22 /pmc/articles/PMC6169391/ /pubmed/30135106 http://dx.doi.org/10.1534/g3.118.200347 Text en Copyright © 2018 Reid et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Mutant Screen Report
Reid, William
Pilitt, Kristina
Alford, Robert
Cervantes-Medina, Adriana
Yu, Hao
Aluvihare, Channa
Harrell, Rob
O’Brochta, David A.
An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics
title An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics
title_full An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics
title_fullStr An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics
title_full_unstemmed An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics
title_short An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics
title_sort anopheles stephensi promoter-trap: augmenting genome annotation and functional genomics
topic Mutant Screen Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169391/
https://www.ncbi.nlm.nih.gov/pubmed/30135106
http://dx.doi.org/10.1534/g3.118.200347
work_keys_str_mv AT reidwilliam ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT pilittkristina ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT alfordrobert ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT cervantesmedinaadriana ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT yuhao ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT aluviharechanna ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT harrellrob ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT obrochtadavida ananophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT reidwilliam anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT pilittkristina anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT alfordrobert anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT cervantesmedinaadriana anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT yuhao anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT aluviharechanna anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT harrellrob anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics
AT obrochtadavida anophelesstephensipromotertrapaugmentinggenomeannotationandfunctionalgenomics