Cargando…

Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes

Biosurfactants are secondary metabolites with surface active properties and have wide application in agriculture, industrial and therapeutic products. The present study was aimed to screen bacteria for the production of biosurfactant, its characterization and development of a cost effective media fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Narendra Kumar, P., Swapna, T.H., Khan, Mohamed Yahya, Reddy, Gopal, Hameeda, Bee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169434/
https://www.ncbi.nlm.nih.gov/pubmed/30294240
http://dx.doi.org/10.1016/j.sjbs.2015.09.014
_version_ 1783360519536640000
author Narendra Kumar, P.
Swapna, T.H.
Khan, Mohamed Yahya
Reddy, Gopal
Hameeda, Bee
author_facet Narendra Kumar, P.
Swapna, T.H.
Khan, Mohamed Yahya
Reddy, Gopal
Hameeda, Bee
author_sort Narendra Kumar, P.
collection PubMed
description Biosurfactants are secondary metabolites with surface active properties and have wide application in agriculture, industrial and therapeutic products. The present study was aimed to screen bacteria for the production of biosurfactant, its characterization and development of a cost effective media formulation for iturin A production. A total of 100 bacterial isolates were isolated from different rhizosphere soil samples by enrichment culture method and screened for biosurfactant activity. Twenty isolates were selected for further studies based on their biosurfactant activity [emulsification index (EI%), emulsification assay (EA), surface tension (ST) reduction] and antagonistic activity. Among them one potential isolate Bacillus sp. RHNK22 showed good EI% and EA with different hydrocarbons tested in this study. Using biochemical methods and 16S rRNA gene sequence, it was identified as Bacillus amyloliquefaciens. Presence of iturin A in RHNK22 was identified by gene specific primers and confirmed as iturin A by FTIR and HPLC. B. amyloliquefaciens RHNK22 exhibited good surface active properties and antifungal activity against Sclerotium rolfsii and Macrophomina phaseolina. For cost-effective production of iturin A, 16 different agro-industrial wastes were screened as substrates, and Sunflower oil cake (SOC) was favouring high iturin A production. Further, using response surface methodology (RSM) model, there was a 3-fold increase in iturin A production (using SOC 4%, inoculum size 1%, at pH 6.0 and 37 °C temperature in 48 h). This is the first report on using SOC as a substrate for iturin A production.
format Online
Article
Text
id pubmed-6169434
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-61694342018-10-05 Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes Narendra Kumar, P. Swapna, T.H. Khan, Mohamed Yahya Reddy, Gopal Hameeda, Bee Saudi J Biol Sci Article Biosurfactants are secondary metabolites with surface active properties and have wide application in agriculture, industrial and therapeutic products. The present study was aimed to screen bacteria for the production of biosurfactant, its characterization and development of a cost effective media formulation for iturin A production. A total of 100 bacterial isolates were isolated from different rhizosphere soil samples by enrichment culture method and screened for biosurfactant activity. Twenty isolates were selected for further studies based on their biosurfactant activity [emulsification index (EI%), emulsification assay (EA), surface tension (ST) reduction] and antagonistic activity. Among them one potential isolate Bacillus sp. RHNK22 showed good EI% and EA with different hydrocarbons tested in this study. Using biochemical methods and 16S rRNA gene sequence, it was identified as Bacillus amyloliquefaciens. Presence of iturin A in RHNK22 was identified by gene specific primers and confirmed as iturin A by FTIR and HPLC. B. amyloliquefaciens RHNK22 exhibited good surface active properties and antifungal activity against Sclerotium rolfsii and Macrophomina phaseolina. For cost-effective production of iturin A, 16 different agro-industrial wastes were screened as substrates, and Sunflower oil cake (SOC) was favouring high iturin A production. Further, using response surface methodology (RSM) model, there was a 3-fold increase in iturin A production (using SOC 4%, inoculum size 1%, at pH 6.0 and 37 °C temperature in 48 h). This is the first report on using SOC as a substrate for iturin A production. Elsevier 2017-11 2015-10-14 /pmc/articles/PMC6169434/ /pubmed/30294240 http://dx.doi.org/10.1016/j.sjbs.2015.09.014 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Narendra Kumar, P.
Swapna, T.H.
Khan, Mohamed Yahya
Reddy, Gopal
Hameeda, Bee
Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes
title Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes
title_full Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes
title_fullStr Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes
title_full_unstemmed Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes
title_short Statistical optimization of antifungal iturin A production from Bacillus amyloliquefaciens RHNK22 using agro-industrial wastes
title_sort statistical optimization of antifungal iturin a production from bacillus amyloliquefaciens rhnk22 using agro-industrial wastes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169434/
https://www.ncbi.nlm.nih.gov/pubmed/30294240
http://dx.doi.org/10.1016/j.sjbs.2015.09.014
work_keys_str_mv AT narendrakumarp statisticaloptimizationofantifungaliturinaproductionfrombacillusamyloliquefaciensrhnk22usingagroindustrialwastes
AT swapnath statisticaloptimizationofantifungaliturinaproductionfrombacillusamyloliquefaciensrhnk22usingagroindustrialwastes
AT khanmohamedyahya statisticaloptimizationofantifungaliturinaproductionfrombacillusamyloliquefaciensrhnk22usingagroindustrialwastes
AT reddygopal statisticaloptimizationofantifungaliturinaproductionfrombacillusamyloliquefaciensrhnk22usingagroindustrialwastes
AT hameedabee statisticaloptimizationofantifungaliturinaproductionfrombacillusamyloliquefaciensrhnk22usingagroindustrialwastes