Cargando…
Growth inhibitory properties of lactose fatty acid esters
Sugar esters are biodegradable, nonionic surfactants which have microbial inhibitory properties. The influence of the fatty acid chain length on the microbial inhibitory properties of lactose esters was investigated in this study. Specifically, lactose monooctanoate (LMO), lactose monodecanoate (LMD...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169438/ https://www.ncbi.nlm.nih.gov/pubmed/30294216 http://dx.doi.org/10.1016/j.sjbs.2015.10.013 |
_version_ | 1783360520457289728 |
---|---|
author | Lee, Seung-Min Sandhu, Guneev Walsh, Marie K. |
author_facet | Lee, Seung-Min Sandhu, Guneev Walsh, Marie K. |
author_sort | Lee, Seung-Min |
collection | PubMed |
description | Sugar esters are biodegradable, nonionic surfactants which have microbial inhibitory properties. The influence of the fatty acid chain length on the microbial inhibitory properties of lactose esters was investigated in this study. Specifically, lactose monooctanoate (LMO), lactose monodecanoate (LMD), lactose monolaurate (LML) and lactose monomyristate (LMM) were synthesized and dissolved in both dimethyl sulfoxide (DMSO) and ethanol. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined in growth media. LML was the most effective ester, exhibiting MIC values of <0.05 to <5 mg/ml for each Gram-positive bacteria tested (Bacillus cereus, Mycobacterium KMS, Streptococcus suis, Listeria monocytogenes, Enterococcus faecalis, and Streptococcus mutans) and MBC values of <3 to <5 mg/ml for B. cereus, M. KMS, S. suis, and L. monocytogenes. LMD showed MIC and MBC values of <1 to <5 mg/ml for B. cereus, M. KMS, S. suis, L. monocytogenes, and E. faecalis, with greater inhibition when dissolved in ethanol. LMM showed MIC and MBC values of <1 to <5 mg/ml for B. cereus, M. KMS, and S. suis. LMO was the least effective showing a MBC value of <5 mg/ml for only B. cereus, though MIC values for S. suis and L. monocytogenes were observed when dissolved in DMSO. B. cereus and S. suis were the most susceptible to the lactose esters tested, while S. mutans and E. faecalis were the most resilient and no esters were effective on Escherichia coli O157:H7. This research showed that lactose esters esterified with decanoic and lauric acids exhibited greater microbial inhibitory properties than lactose esters of octanoate and myristate against Gram-positive bacteria. |
format | Online Article Text |
id | pubmed-6169438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-61694382018-10-05 Growth inhibitory properties of lactose fatty acid esters Lee, Seung-Min Sandhu, Guneev Walsh, Marie K. Saudi J Biol Sci Article Sugar esters are biodegradable, nonionic surfactants which have microbial inhibitory properties. The influence of the fatty acid chain length on the microbial inhibitory properties of lactose esters was investigated in this study. Specifically, lactose monooctanoate (LMO), lactose monodecanoate (LMD), lactose monolaurate (LML) and lactose monomyristate (LMM) were synthesized and dissolved in both dimethyl sulfoxide (DMSO) and ethanol. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined in growth media. LML was the most effective ester, exhibiting MIC values of <0.05 to <5 mg/ml for each Gram-positive bacteria tested (Bacillus cereus, Mycobacterium KMS, Streptococcus suis, Listeria monocytogenes, Enterococcus faecalis, and Streptococcus mutans) and MBC values of <3 to <5 mg/ml for B. cereus, M. KMS, S. suis, and L. monocytogenes. LMD showed MIC and MBC values of <1 to <5 mg/ml for B. cereus, M. KMS, S. suis, L. monocytogenes, and E. faecalis, with greater inhibition when dissolved in ethanol. LMM showed MIC and MBC values of <1 to <5 mg/ml for B. cereus, M. KMS, and S. suis. LMO was the least effective showing a MBC value of <5 mg/ml for only B. cereus, though MIC values for S. suis and L. monocytogenes were observed when dissolved in DMSO. B. cereus and S. suis were the most susceptible to the lactose esters tested, while S. mutans and E. faecalis were the most resilient and no esters were effective on Escherichia coli O157:H7. This research showed that lactose esters esterified with decanoic and lauric acids exhibited greater microbial inhibitory properties than lactose esters of octanoate and myristate against Gram-positive bacteria. Elsevier 2017-11 2015-10-23 /pmc/articles/PMC6169438/ /pubmed/30294216 http://dx.doi.org/10.1016/j.sjbs.2015.10.013 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lee, Seung-Min Sandhu, Guneev Walsh, Marie K. Growth inhibitory properties of lactose fatty acid esters |
title | Growth inhibitory properties of lactose fatty acid esters |
title_full | Growth inhibitory properties of lactose fatty acid esters |
title_fullStr | Growth inhibitory properties of lactose fatty acid esters |
title_full_unstemmed | Growth inhibitory properties of lactose fatty acid esters |
title_short | Growth inhibitory properties of lactose fatty acid esters |
title_sort | growth inhibitory properties of lactose fatty acid esters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169438/ https://www.ncbi.nlm.nih.gov/pubmed/30294216 http://dx.doi.org/10.1016/j.sjbs.2015.10.013 |
work_keys_str_mv | AT leeseungmin growthinhibitorypropertiesoflactosefattyacidesters AT sandhuguneev growthinhibitorypropertiesoflactosefattyacidesters AT walshmariek growthinhibitorypropertiesoflactosefattyacidesters |