Cargando…
Parameterizing time in electronic health record studies
Background Fields like nonlinear physics offer methods for analyzing time series, but many methods require that the time series be stationary—no change in properties over time. Objective Medicine is far from stationary, but the challenge may be able to be ameliorated by reparameterizing time because...
Autores principales: | Hripcsak, George, Albers, David J, Perotte, Adler |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169471/ https://www.ncbi.nlm.nih.gov/pubmed/25725004 http://dx.doi.org/10.1093/jamia/ocu051 |
Ejemplares similares
-
Correlating electronic health record concepts with healthcare process events
por: Hripcsak, George, et al.
Publicado: (2013) -
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
por: Perotte, Adler, et al.
Publicado: (2015) -
Characterizing non-heroin opioid overdoses using electronic health records
por: Averitt, Amelia J, et al.
Publicado: (2019) -
Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms
por: Albers, D.J., et al.
Publicado: (2018) -
Next-generation phenotyping of electronic health records
por: Hripcsak, George, et al.
Publicado: (2013)