Cargando…

Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings

Engineered iron oxide nanoparticles (IO-NPs) have been used extensively for environmental remediation. It may cause the release IO-NPs to the environment affecting the functions of ecosystems. Plants are an important component of ecosystems and can be used for the evaluation of overall fate, transpo...

Descripción completa

Detalles Bibliográficos
Autores principales: Pariona, Nicolaza, Martinez, Arturo I., Hdz-García, H.M., Cruz, Luis A., Hernandez-Valdes, Adolfo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169506/
https://www.ncbi.nlm.nih.gov/pubmed/30294224
http://dx.doi.org/10.1016/j.sjbs.2016.06.004
Descripción
Sumario:Engineered iron oxide nanoparticles (IO-NPs) have been used extensively for environmental remediation. It may cause the release IO-NPs to the environment affecting the functions of ecosystems. Plants are an important component of ecosystems and can be used for the evaluation of overall fate, transport and exposure pathways of IO-NPs in the environment. In this work, the effects of engineered ferrihydrite and hematite NPs on the germination and growth of maize are studied. The germination and growth of maize were done with treatments at different concentrations of hematite and ferrihydrite NPs, namely 1, 2, 4, and 6 g/L. Biological indicators of toxicity or stress in maize seedlings were not observed in treatments with engineered hematite and ferrihydrite NPs. In contrast, the NPs treatments increased the growth of maize and the chlorophyll content, except for hematite NPs at 6 g/L, where non-significant effects were found. The translocation of engineered ferrihydrite and hematite NPs in maize stems was demonstrated using confocal laser scanning microscopy.