Cargando…
Improving data workflow systems with cloud services and use of open data for bioinformatics research
Data workflow systems (DWFSs) enable bioinformatics researchers to combine components for data access and data analytics, and to share the final data analytics approach with their collaborators. Increasingly, such systems have to cope with large-scale data, such as full genomes (about 200 GB each),...
Autores principales: | Karim, Md Rezaul, Michel, Audrey, Zappa, Achille, Baranov, Pavel, Sahay, Ratnesh, Rebholz-Schuhmann, Dietrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169675/ https://www.ncbi.nlm.nih.gov/pubmed/28419324 http://dx.doi.org/10.1093/bib/bbx039 |
Ejemplares similares
-
Towards precision medicine: discovering novel gynecological cancer biomarkers and pathways using linked data
por: Jha, Alokkumar, et al.
Publicado: (2017) -
Deep learning-based clustering approaches for bioinformatics
por: Karim, Md Rezaul, et al.
Publicado: (2020) -
SAFE: SPARQL Federation over RDF Data Cubes with Access Control
por: Khan, Yasar, et al.
Publicado: (2017) -
Predicting links between tumor samples and genes using 2-Layered graph based diffusion approach
por: Timilsina, Mohan, et al.
Publicado: (2019) -
Where to search top-K biomedical ontologies?
por: Oliveira, Daniela, et al.
Publicado: (2018)