Cargando…

In patients with unilateral pleural effusion, restricted lung inflation is the principal predictor of increased dyspnoea

BACKGROUND AND OBJECTIVE: The mechanism of dyspnoea associated with pleural effusion is uncertain. A cohort of patients requiring thoracoscopy for unilateral exudative effusion were investigated for associations between dyspnoea and suggested predictors: impaired ipsilateral diaphragm movement, effu...

Descripción completa

Detalles Bibliográficos
Autores principales: Garske, Luke A., Kunarajah, Kuhan, Zimmerman, Paul V., Adams, Lewis, Stewart, Ian B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169850/
https://www.ncbi.nlm.nih.gov/pubmed/30281613
http://dx.doi.org/10.1371/journal.pone.0202621
Descripción
Sumario:BACKGROUND AND OBJECTIVE: The mechanism of dyspnoea associated with pleural effusion is uncertain. A cohort of patients requiring thoracoscopy for unilateral exudative effusion were investigated for associations between dyspnoea and suggested predictors: impaired ipsilateral diaphragm movement, effusion volume and restricted lung inflation. METHODS: Baseline Dyspnoea Index, respiratory function, and ultrasound assessment of ipsilateral diaphragm movement were assessed prior to thoracoscopy, when effusion volume was measured. Transitional Dyspnoea Index (change from baseline) was assessed 4 and 8 weeks after thoracoscopy. Pearson product moment assessed bivariate correlations and a general linear model examined how well total lung capacity (measuring restricted lung inflation), effusion volume and impaired diaphragm movement predicted Baseline Dyspnoea Index. Un-paired t tests compared the groups with normal and impaired diaphragm movement. RESULTS: 19 patients were studied (14 malignant etiology). Total lung capacity was associated with Baseline Dyspnoea Index (r = 0.68, P = 0.003). Effusion volume (r = -0.138, P = 0.60) and diaphragm movement (P = 0.09) were not associated with Baseline Dyspnoea Index. Effusion volume was larger with impaired diaphragm movement compared to normal diaphragm movement (2.16 ±SD 0.95 vs.1.16 ±0.92 L, P = 0.009). Total lung capacity was lower with impaired diaphragm movement compared to normal diaphragm movement (65.4 ±10.3 vs 78.2 ±8.6% predicted, P = 0.011). The optimal general linear model to predict Baseline Dyspnoea Index used total lung capacity alone (adjusted R(2) = 0.42, P = 0.003). In nine participants with controlled effusion, baseline effusion volume (r = 0.775, P = 0.014) and total lung capacity (r = -0.690, P = 0.040) were associated with Transitional Dyspnoea Index. CONCLUSIONS: Restricted lung inflation was the principal predictor of increased dyspnoea prior to thoracoscopic drainage of effusion, with no independent additional association with either effusion volume or impaired ipsilateral diaphragm movement. Restricted lung inflation may be an important determinant of the dyspnoea associated with pleural effusion.