Cargando…

Smooth super-twisting sliding mode control for the class of underactuated systems

In this article, Smooth Super-twisting Sliding Mode Control (SSTWSMC) is investigated for the class of underactuated system. In underactuated systems, the control design is not directly applicable as for other systems (known as fully actuated systems). Therefore, at initial step, a nonlinear uncerta...

Descripción completa

Detalles Bibliográficos
Autores principales: Din, Sami ud, Rehman, Fazal ur, Khan, Qudrat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169871/
https://www.ncbi.nlm.nih.gov/pubmed/30281586
http://dx.doi.org/10.1371/journal.pone.0203667
Descripción
Sumario:In this article, Smooth Super-twisting Sliding Mode Control (SSTWSMC) is investigated for the class of underactuated system. In underactuated systems, the control design is not directly applicable as for other systems (known as fully actuated systems). Therefore, at initial step, a nonlinear uncertain model of systems is transformed into the controllable canonical form, and then Smooth Super Twisting (SSTW) based Sliding Mode Control (SMC) is devised for the control design purpose for the considered class. In addition, closed loop stability of the proposed technique is presented in a fascinating way. The effectiveness and supremacy of the proposed control technique is proven by extensive analysis between conventional Sliding Mode Control (SMC), Super twisting (STW) sliding mode control and Smooth Super-twisting Sliding Mode Control (SSTWSMC). The comprehensive analysis evaluates the attributes like robustness enhancement, settling time, control effort, chattering reduction, overshoot, sliding mode convergence, etc. and is supported by simulations as well as practical implementation on ball and beam balancer (which is considered as application example).