Cargando…

A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles

Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbers...

Descripción completa

Detalles Bibliográficos
Autores principales: Tucci, Samantha T., Seo, Jai W., Kakwere, Hamilton, Kheirolomoom, Azadeh, Ingham, Elizabeth S., Mahakian, Lisa M., Tam, Sarah, Tumbale, Spencer, Baikoghli, Mo, Cheng, R. Holland, Ferrara, Katherine W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170330/
https://www.ncbi.nlm.nih.gov/pubmed/30324084
http://dx.doi.org/10.7150/ntno.26969
_version_ 1783360629052014592
author Tucci, Samantha T.
Seo, Jai W.
Kakwere, Hamilton
Kheirolomoom, Azadeh
Ingham, Elizabeth S.
Mahakian, Lisa M.
Tam, Sarah
Tumbale, Spencer
Baikoghli, Mo
Cheng, R. Holland
Ferrara, Katherine W.
author_facet Tucci, Samantha T.
Seo, Jai W.
Kakwere, Hamilton
Kheirolomoom, Azadeh
Ingham, Elizabeth S.
Mahakian, Lisa M.
Tam, Sarah
Tumbale, Spencer
Baikoghli, Mo
Cheng, R. Holland
Ferrara, Katherine W.
author_sort Tucci, Samantha T.
collection PubMed
description Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbersome, time-consuming and can be difficult to reliably replicate. Further, the creation of multi-functional SqGem-based NP theranostics would facilitate characterization of in vivo pharmacokinetics and efficacy. Methods: Squalenoylation conjugation chemistry was enhanced to improve reliability and scalability using tert-butyldimethylsilyl (TBDMS) protecting groups. We then optimized a scalable microfluidic mixing platform to produce SqGem-based NPs and evaluated the stability and morphology of select NP formulations using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity was evaluated in both PANC-1 and KPC (Kras(LSL-G12D/+); Trp53(LSL-R172H/+); Pdx-Cre) pancreatic cancer cell lines. A (64)Cu chelator (2-S-(4-aminobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA) was squalenoylated and used with positron emission tomography (PET) imaging to monitor the in vivo fate of SqGem-based NPs. Results: Squalenoylation yields of gemcitabine increased from 15% to 63%. Cholesterol-PEG-2k inclusion was required to form SqGem-based NPs using our technique, and additional cholesterol inclusion increased particle stability at room temperature; after 1 week the PDI of SqGem NPs with cholesterol was ~ 0.2 while the PDI of SqGem NPs lacking cholesterol was ~ 0.5. Similar or superior cytotoxicity was achieved for SqGem-based NPs compared to gemcitabine or Abraxane® when evaluated at a concentration of 10 µM. Squalenoylation of NOTA enabled in vivo monitoring of SqGem-based NP pharmacokinetics and biodistribution. Conclusion: We present a scalable technique for fabricating efficacious squalenoylated-gemcitabine nanoparticles and confirm their pharmacokinetic profile using a novel multifunctional (64)Cu-SqNOTA-SqGem NP.
format Online
Article
Text
id pubmed-6170330
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-61703302018-10-15 A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles Tucci, Samantha T. Seo, Jai W. Kakwere, Hamilton Kheirolomoom, Azadeh Ingham, Elizabeth S. Mahakian, Lisa M. Tam, Sarah Tumbale, Spencer Baikoghli, Mo Cheng, R. Holland Ferrara, Katherine W. Nanotheranostics Research Paper Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbersome, time-consuming and can be difficult to reliably replicate. Further, the creation of multi-functional SqGem-based NP theranostics would facilitate characterization of in vivo pharmacokinetics and efficacy. Methods: Squalenoylation conjugation chemistry was enhanced to improve reliability and scalability using tert-butyldimethylsilyl (TBDMS) protecting groups. We then optimized a scalable microfluidic mixing platform to produce SqGem-based NPs and evaluated the stability and morphology of select NP formulations using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity was evaluated in both PANC-1 and KPC (Kras(LSL-G12D/+); Trp53(LSL-R172H/+); Pdx-Cre) pancreatic cancer cell lines. A (64)Cu chelator (2-S-(4-aminobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA) was squalenoylated and used with positron emission tomography (PET) imaging to monitor the in vivo fate of SqGem-based NPs. Results: Squalenoylation yields of gemcitabine increased from 15% to 63%. Cholesterol-PEG-2k inclusion was required to form SqGem-based NPs using our technique, and additional cholesterol inclusion increased particle stability at room temperature; after 1 week the PDI of SqGem NPs with cholesterol was ~ 0.2 while the PDI of SqGem NPs lacking cholesterol was ~ 0.5. Similar or superior cytotoxicity was achieved for SqGem-based NPs compared to gemcitabine or Abraxane® when evaluated at a concentration of 10 µM. Squalenoylation of NOTA enabled in vivo monitoring of SqGem-based NP pharmacokinetics and biodistribution. Conclusion: We present a scalable technique for fabricating efficacious squalenoylated-gemcitabine nanoparticles and confirm their pharmacokinetic profile using a novel multifunctional (64)Cu-SqNOTA-SqGem NP. Ivyspring International Publisher 2018-09-05 /pmc/articles/PMC6170330/ /pubmed/30324084 http://dx.doi.org/10.7150/ntno.26969 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Tucci, Samantha T.
Seo, Jai W.
Kakwere, Hamilton
Kheirolomoom, Azadeh
Ingham, Elizabeth S.
Mahakian, Lisa M.
Tam, Sarah
Tumbale, Spencer
Baikoghli, Mo
Cheng, R. Holland
Ferrara, Katherine W.
A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
title A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
title_full A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
title_fullStr A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
title_full_unstemmed A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
title_short A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
title_sort scalable method for squalenoylation and assembly of multifunctional (64)cu-labeled squalenoylated gemcitabine nanoparticles
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170330/
https://www.ncbi.nlm.nih.gov/pubmed/30324084
http://dx.doi.org/10.7150/ntno.26969
work_keys_str_mv AT tuccisamanthat ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT seojaiw ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT kakwerehamilton ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT kheirolomoomazadeh ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT inghamelizabeths ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT mahakianlisam ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT tamsarah ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT tumbalespencer ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT baikoghlimo ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT chengrholland ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT ferrarakatherinew ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT tuccisamanthat scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT seojaiw scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT kakwerehamilton scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT kheirolomoomazadeh scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT inghamelizabeths scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT mahakianlisam scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT tamsarah scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT tumbalespencer scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT baikoghlimo scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT chengrholland scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles
AT ferrarakatherinew scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles