Cargando…
A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles
Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbers...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170330/ https://www.ncbi.nlm.nih.gov/pubmed/30324084 http://dx.doi.org/10.7150/ntno.26969 |
_version_ | 1783360629052014592 |
---|---|
author | Tucci, Samantha T. Seo, Jai W. Kakwere, Hamilton Kheirolomoom, Azadeh Ingham, Elizabeth S. Mahakian, Lisa M. Tam, Sarah Tumbale, Spencer Baikoghli, Mo Cheng, R. Holland Ferrara, Katherine W. |
author_facet | Tucci, Samantha T. Seo, Jai W. Kakwere, Hamilton Kheirolomoom, Azadeh Ingham, Elizabeth S. Mahakian, Lisa M. Tam, Sarah Tumbale, Spencer Baikoghli, Mo Cheng, R. Holland Ferrara, Katherine W. |
author_sort | Tucci, Samantha T. |
collection | PubMed |
description | Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbersome, time-consuming and can be difficult to reliably replicate. Further, the creation of multi-functional SqGem-based NP theranostics would facilitate characterization of in vivo pharmacokinetics and efficacy. Methods: Squalenoylation conjugation chemistry was enhanced to improve reliability and scalability using tert-butyldimethylsilyl (TBDMS) protecting groups. We then optimized a scalable microfluidic mixing platform to produce SqGem-based NPs and evaluated the stability and morphology of select NP formulations using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity was evaluated in both PANC-1 and KPC (Kras(LSL-G12D/+); Trp53(LSL-R172H/+); Pdx-Cre) pancreatic cancer cell lines. A (64)Cu chelator (2-S-(4-aminobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA) was squalenoylated and used with positron emission tomography (PET) imaging to monitor the in vivo fate of SqGem-based NPs. Results: Squalenoylation yields of gemcitabine increased from 15% to 63%. Cholesterol-PEG-2k inclusion was required to form SqGem-based NPs using our technique, and additional cholesterol inclusion increased particle stability at room temperature; after 1 week the PDI of SqGem NPs with cholesterol was ~ 0.2 while the PDI of SqGem NPs lacking cholesterol was ~ 0.5. Similar or superior cytotoxicity was achieved for SqGem-based NPs compared to gemcitabine or Abraxane® when evaluated at a concentration of 10 µM. Squalenoylation of NOTA enabled in vivo monitoring of SqGem-based NP pharmacokinetics and biodistribution. Conclusion: We present a scalable technique for fabricating efficacious squalenoylated-gemcitabine nanoparticles and confirm their pharmacokinetic profile using a novel multifunctional (64)Cu-SqNOTA-SqGem NP. |
format | Online Article Text |
id | pubmed-6170330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-61703302018-10-15 A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles Tucci, Samantha T. Seo, Jai W. Kakwere, Hamilton Kheirolomoom, Azadeh Ingham, Elizabeth S. Mahakian, Lisa M. Tam, Sarah Tumbale, Spencer Baikoghli, Mo Cheng, R. Holland Ferrara, Katherine W. Nanotheranostics Research Paper Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbersome, time-consuming and can be difficult to reliably replicate. Further, the creation of multi-functional SqGem-based NP theranostics would facilitate characterization of in vivo pharmacokinetics and efficacy. Methods: Squalenoylation conjugation chemistry was enhanced to improve reliability and scalability using tert-butyldimethylsilyl (TBDMS) protecting groups. We then optimized a scalable microfluidic mixing platform to produce SqGem-based NPs and evaluated the stability and morphology of select NP formulations using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity was evaluated in both PANC-1 and KPC (Kras(LSL-G12D/+); Trp53(LSL-R172H/+); Pdx-Cre) pancreatic cancer cell lines. A (64)Cu chelator (2-S-(4-aminobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA) was squalenoylated and used with positron emission tomography (PET) imaging to monitor the in vivo fate of SqGem-based NPs. Results: Squalenoylation yields of gemcitabine increased from 15% to 63%. Cholesterol-PEG-2k inclusion was required to form SqGem-based NPs using our technique, and additional cholesterol inclusion increased particle stability at room temperature; after 1 week the PDI of SqGem NPs with cholesterol was ~ 0.2 while the PDI of SqGem NPs lacking cholesterol was ~ 0.5. Similar or superior cytotoxicity was achieved for SqGem-based NPs compared to gemcitabine or Abraxane® when evaluated at a concentration of 10 µM. Squalenoylation of NOTA enabled in vivo monitoring of SqGem-based NP pharmacokinetics and biodistribution. Conclusion: We present a scalable technique for fabricating efficacious squalenoylated-gemcitabine nanoparticles and confirm their pharmacokinetic profile using a novel multifunctional (64)Cu-SqNOTA-SqGem NP. Ivyspring International Publisher 2018-09-05 /pmc/articles/PMC6170330/ /pubmed/30324084 http://dx.doi.org/10.7150/ntno.26969 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Tucci, Samantha T. Seo, Jai W. Kakwere, Hamilton Kheirolomoom, Azadeh Ingham, Elizabeth S. Mahakian, Lisa M. Tam, Sarah Tumbale, Spencer Baikoghli, Mo Cheng, R. Holland Ferrara, Katherine W. A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles |
title | A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles |
title_full | A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles |
title_fullStr | A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles |
title_full_unstemmed | A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles |
title_short | A Scalable Method for Squalenoylation and Assembly of Multifunctional (64)Cu-Labeled Squalenoylated Gemcitabine Nanoparticles |
title_sort | scalable method for squalenoylation and assembly of multifunctional (64)cu-labeled squalenoylated gemcitabine nanoparticles |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170330/ https://www.ncbi.nlm.nih.gov/pubmed/30324084 http://dx.doi.org/10.7150/ntno.26969 |
work_keys_str_mv | AT tuccisamanthat ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT seojaiw ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT kakwerehamilton ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT kheirolomoomazadeh ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT inghamelizabeths ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT mahakianlisam ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT tamsarah ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT tumbalespencer ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT baikoghlimo ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT chengrholland ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT ferrarakatherinew ascalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT tuccisamanthat scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT seojaiw scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT kakwerehamilton scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT kheirolomoomazadeh scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT inghamelizabeths scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT mahakianlisam scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT tamsarah scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT tumbalespencer scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT baikoghlimo scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT chengrholland scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles AT ferrarakatherinew scalablemethodforsqualenoylationandassemblyofmultifunctional64culabeledsqualenoylatedgemcitabinenanoparticles |