Cargando…
Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery
Zebrafish (Danio rerio) is emerging as an increasingly successful model for translational research on human neurological disorders. In this review, we appraise the high degree of neurological and behavioural resemblance of zebrafish with humans. It is highly validated as a powerful vertebrate model...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170431/ https://www.ncbi.nlm.nih.gov/pubmed/30302279 http://dx.doi.org/10.1038/s41420-018-0109-7 |
Sumario: | Zebrafish (Danio rerio) is emerging as an increasingly successful model for translational research on human neurological disorders. In this review, we appraise the high degree of neurological and behavioural resemblance of zebrafish with humans. It is highly validated as a powerful vertebrate model for investigating human neurodegenerative diseases. The neuroanatomic and neurochemical pathways of zebrafish brain exhibit a profound resemblance with the human brain. Physiological, emotional and social behavioural pattern similarities between them have also been well established. Interestingly, zebrafish models have been used successfully to simulate the pathology of Alzheimer’s disease (AD) as well as Tauopathy. Their relatively simple nervous system and the optical transparency of the embryos permit real-time neurological imaging. Here, we further elaborate on the use of recent real-time imaging techniques to obtain vital insights into the neurodegeneration that occurs in AD. Zebrafish is adeptly suitable for Ca(2+) imaging, which provides a better understanding of neuronal activity and axonal dystrophy in a non-invasive manner. Three-dimensional imaging in zebrafish is a rapidly evolving technique, which allows the visualisation of the whole organism for an elaborate in vivo functional and neurophysiological analysis in disease condition. Suitability to high-throughput screening and similarity with humans makes zebrafish an excellent model for screening neurospecific compounds. Thus, the zebrafish model can be pivotal in bridging the gap from the bench to the bedside. This fish is becoming an increasingly successful model to understand AD with further scope for investigation in neurodevelopment and neurodegeneration, which promises exciting research opportunities in the future. |
---|