Cargando…
Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder
Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNA(Gln)). mt-tRNA(Gln) is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotra...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170436/ https://www.ncbi.nlm.nih.gov/pubmed/30283131 http://dx.doi.org/10.1038/s41467-018-06250-w |
_version_ | 1783360644716691456 |
---|---|
author | Friederich, Marisa W. Timal, Sharita Powell, Christopher A. Dallabona, Cristina Kurolap, Alina Palacios-Zambrano, Sara Bratkovic, Drago Derks, Terry G. J. Bick, David Bouman, Katelijne Chatfield, Kathryn C. Damouny-Naoum, Nadine Dishop, Megan K. Falik-Zaccai, Tzipora C. Fares, Fuad Fedida, Ayalla Ferrero, Ileana Gallagher, Renata C. Garesse, Rafael Gilberti, Micol González, Cristina Gowan, Katherine Habib, Clair Halligan, Rebecca K. Kalfon, Limor Knight, Kaz Lefeber, Dirk Mamblona, Laura Mandel, Hanna Mory, Adi Ottoson, John Paperna, Tamar Pruijn, Ger J. M. Rebelo-Guiomar, Pedro F. Saada, Ann Sainz, Bruno Salvemini, Hayley Schoots, Mirthe H. Smeitink, Jan A. Szukszto, Maciej J. ter Horst, Hendrik J. van den Brandt, Frans van Spronsen, Francjan J. Veltman, Joris A. Wartchow, Eric Wintjes, Liesbeth T. Zohar, Yaniv Fernández-Moreno, Miguel A. Baris, Hagit N. Donnini, Claudia Minczuk, Michal Rodenburg, Richard J. Van Hove, Johan L. K. |
author_facet | Friederich, Marisa W. Timal, Sharita Powell, Christopher A. Dallabona, Cristina Kurolap, Alina Palacios-Zambrano, Sara Bratkovic, Drago Derks, Terry G. J. Bick, David Bouman, Katelijne Chatfield, Kathryn C. Damouny-Naoum, Nadine Dishop, Megan K. Falik-Zaccai, Tzipora C. Fares, Fuad Fedida, Ayalla Ferrero, Ileana Gallagher, Renata C. Garesse, Rafael Gilberti, Micol González, Cristina Gowan, Katherine Habib, Clair Halligan, Rebecca K. Kalfon, Limor Knight, Kaz Lefeber, Dirk Mamblona, Laura Mandel, Hanna Mory, Adi Ottoson, John Paperna, Tamar Pruijn, Ger J. M. Rebelo-Guiomar, Pedro F. Saada, Ann Sainz, Bruno Salvemini, Hayley Schoots, Mirthe H. Smeitink, Jan A. Szukszto, Maciej J. ter Horst, Hendrik J. van den Brandt, Frans van Spronsen, Francjan J. Veltman, Joris A. Wartchow, Eric Wintjes, Liesbeth T. Zohar, Yaniv Fernández-Moreno, Miguel A. Baris, Hagit N. Donnini, Claudia Minczuk, Michal Rodenburg, Richard J. Van Hove, Johan L. K. |
author_sort | Friederich, Marisa W. |
collection | PubMed |
description | Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNA(Gln)). mt-tRNA(Gln) is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNA(Gln) and mitochondrial protein translation are deficient in patients’ fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex. |
format | Online Article Text |
id | pubmed-6170436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61704362018-10-09 Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder Friederich, Marisa W. Timal, Sharita Powell, Christopher A. Dallabona, Cristina Kurolap, Alina Palacios-Zambrano, Sara Bratkovic, Drago Derks, Terry G. J. Bick, David Bouman, Katelijne Chatfield, Kathryn C. Damouny-Naoum, Nadine Dishop, Megan K. Falik-Zaccai, Tzipora C. Fares, Fuad Fedida, Ayalla Ferrero, Ileana Gallagher, Renata C. Garesse, Rafael Gilberti, Micol González, Cristina Gowan, Katherine Habib, Clair Halligan, Rebecca K. Kalfon, Limor Knight, Kaz Lefeber, Dirk Mamblona, Laura Mandel, Hanna Mory, Adi Ottoson, John Paperna, Tamar Pruijn, Ger J. M. Rebelo-Guiomar, Pedro F. Saada, Ann Sainz, Bruno Salvemini, Hayley Schoots, Mirthe H. Smeitink, Jan A. Szukszto, Maciej J. ter Horst, Hendrik J. van den Brandt, Frans van Spronsen, Francjan J. Veltman, Joris A. Wartchow, Eric Wintjes, Liesbeth T. Zohar, Yaniv Fernández-Moreno, Miguel A. Baris, Hagit N. Donnini, Claudia Minczuk, Michal Rodenburg, Richard J. Van Hove, Johan L. K. Nat Commun Article Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNA(Gln)). mt-tRNA(Gln) is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNA(Gln) and mitochondrial protein translation are deficient in patients’ fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex. Nature Publishing Group UK 2018-10-03 /pmc/articles/PMC6170436/ /pubmed/30283131 http://dx.doi.org/10.1038/s41467-018-06250-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Friederich, Marisa W. Timal, Sharita Powell, Christopher A. Dallabona, Cristina Kurolap, Alina Palacios-Zambrano, Sara Bratkovic, Drago Derks, Terry G. J. Bick, David Bouman, Katelijne Chatfield, Kathryn C. Damouny-Naoum, Nadine Dishop, Megan K. Falik-Zaccai, Tzipora C. Fares, Fuad Fedida, Ayalla Ferrero, Ileana Gallagher, Renata C. Garesse, Rafael Gilberti, Micol González, Cristina Gowan, Katherine Habib, Clair Halligan, Rebecca K. Kalfon, Limor Knight, Kaz Lefeber, Dirk Mamblona, Laura Mandel, Hanna Mory, Adi Ottoson, John Paperna, Tamar Pruijn, Ger J. M. Rebelo-Guiomar, Pedro F. Saada, Ann Sainz, Bruno Salvemini, Hayley Schoots, Mirthe H. Smeitink, Jan A. Szukszto, Maciej J. ter Horst, Hendrik J. van den Brandt, Frans van Spronsen, Francjan J. Veltman, Joris A. Wartchow, Eric Wintjes, Liesbeth T. Zohar, Yaniv Fernández-Moreno, Miguel A. Baris, Hagit N. Donnini, Claudia Minczuk, Michal Rodenburg, Richard J. Van Hove, Johan L. K. Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
title | Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
title_full | Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
title_fullStr | Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
title_full_unstemmed | Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
title_short | Pathogenic variants in glutamyl-tRNA(Gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
title_sort | pathogenic variants in glutamyl-trna(gln) amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170436/ https://www.ncbi.nlm.nih.gov/pubmed/30283131 http://dx.doi.org/10.1038/s41467-018-06250-w |
work_keys_str_mv | AT friederichmarisaw pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT timalsharita pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT powellchristophera pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT dallabonacristina pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT kurolapalina pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT palacioszambranosara pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT bratkovicdrago pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT derksterrygj pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT bickdavid pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT boumankatelijne pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT chatfieldkathrync pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT damounynaoumnadine pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT dishopmegank pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT falikzaccaitziporac pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT faresfuad pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT fedidaayalla pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT ferreroileana pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT gallagherrenatac pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT garesserafael pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT gilbertimicol pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT gonzalezcristina pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT gowankatherine pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT habibclair pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT halliganrebeccak pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT kalfonlimor pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT knightkaz pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT lefeberdirk pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT mamblonalaura pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT mandelhanna pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT moryadi pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT ottosonjohn pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT papernatamar pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT pruijngerjm pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT rebeloguiomarpedrof pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT saadaann pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT sainzbruno pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT salveminihayley pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT schootsmirtheh pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT smeitinkjana pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT szuksztomaciejj pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT terhorsthendrikj pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT vandenbrandtfrans pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT vanspronsenfrancjanj pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT veltmanjorisa pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT wartchoweric pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT wintjesliesbetht pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT zoharyaniv pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT fernandezmorenomiguela pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT barishagitn pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT donniniclaudia pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT minczukmichal pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT rodenburgrichardj pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder AT vanhovejohanlk pathogenicvariantsinglutamyltrnaglnamidotransferasesubunitscausealethalmitochondrialcardiomyopathydisorder |