Cargando…
Observation of the linewidth broadening of single spins in diamond nanoparticles in aqueous fluid and its relation to the rotational Brownian motion
Capturing the fast rotational motion of single nanoparticles has been hindered owing to the difficulty of acquiring directional information under the optical diffraction limit. Here, we report the linewidth broadening of the electron spin resonance of single nitrogen vacancy (NV) centers that matche...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170451/ https://www.ncbi.nlm.nih.gov/pubmed/30283007 http://dx.doi.org/10.1038/s41598-018-33041-6 |
Sumario: | Capturing the fast rotational motion of single nanoparticles has been hindered owing to the difficulty of acquiring directional information under the optical diffraction limit. Here, we report the linewidth broadening of the electron spin resonance of single nitrogen vacancy (NV) centers that matches the rotational diffusion constant of the host nanodiamonds. When nanodiamonds are gradually detached from the substrates that they were fixed to, their optically detected spin resonance peaks are broadened by 1.8 MHz, which corresponds to the rotational diffusion constant of nanoparticles with a diameter of 11.4 nm from the Einstein–Smoluchowski relation. |
---|