Cargando…

High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys

Precipitation-hardening high-entropy alloys (PH-HEAs) with good strength−ductility balances are a promising candidate for advanced structural applications. However, current HEAs emphasize near-equiatomic initial compositions, which limit the increase of intermetallic precipitates that are closely re...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yao-Jian, Wang, Linjing, Wen, Yuren, Cheng, Baoyuan, Wu, Qinli, Cao, Tangqing, Xiao, Qian, Xue, Yunfei, Sha, Gang, Wang, Yandong, Ren, Yang, Li, Xiaoyan, Wang, Lu, Wang, Fuchi, Cai, Hongnian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170471/
https://www.ncbi.nlm.nih.gov/pubmed/30282971
http://dx.doi.org/10.1038/s41467-018-06600-8
_version_ 1783360652663848960
author Liang, Yao-Jian
Wang, Linjing
Wen, Yuren
Cheng, Baoyuan
Wu, Qinli
Cao, Tangqing
Xiao, Qian
Xue, Yunfei
Sha, Gang
Wang, Yandong
Ren, Yang
Li, Xiaoyan
Wang, Lu
Wang, Fuchi
Cai, Hongnian
author_facet Liang, Yao-Jian
Wang, Linjing
Wen, Yuren
Cheng, Baoyuan
Wu, Qinli
Cao, Tangqing
Xiao, Qian
Xue, Yunfei
Sha, Gang
Wang, Yandong
Ren, Yang
Li, Xiaoyan
Wang, Lu
Wang, Fuchi
Cai, Hongnian
author_sort Liang, Yao-Jian
collection PubMed
description Precipitation-hardening high-entropy alloys (PH-HEAs) with good strength−ductility balances are a promising candidate for advanced structural applications. However, current HEAs emphasize near-equiatomic initial compositions, which limit the increase of intermetallic precipitates that are closely related to the alloy strength. Here we present a strategy to design ultrastrong HEAs with high-content nanoprecipitates by phase separation, which can generate a near-equiatomic matrix in situ while forming strengthening phases, producing a PH-HEA regardless of the initial atomic ratio. Accordingly, we develop a non-equiatomic alloy that utilizes spinodal decomposition to create a low-misfit coherent nanostructure combining a near-equiatomic disordered face-centered-cubic (FCC) matrix with high-content ductile Ni(3)Al-type ordered nanoprecipitates. We find that this spinodal order–disorder nanostructure contributes to a strength increase of ~1.5 GPa (>560%) relative to the HEA without precipitation, achieving one of the highest tensile strength (1.9 GPa) among all bulk HEAs reported previously while retaining good ductility (>9%).
format Online
Article
Text
id pubmed-6170471
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61704712018-10-09 High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys Liang, Yao-Jian Wang, Linjing Wen, Yuren Cheng, Baoyuan Wu, Qinli Cao, Tangqing Xiao, Qian Xue, Yunfei Sha, Gang Wang, Yandong Ren, Yang Li, Xiaoyan Wang, Lu Wang, Fuchi Cai, Hongnian Nat Commun Article Precipitation-hardening high-entropy alloys (PH-HEAs) with good strength−ductility balances are a promising candidate for advanced structural applications. However, current HEAs emphasize near-equiatomic initial compositions, which limit the increase of intermetallic precipitates that are closely related to the alloy strength. Here we present a strategy to design ultrastrong HEAs with high-content nanoprecipitates by phase separation, which can generate a near-equiatomic matrix in situ while forming strengthening phases, producing a PH-HEA regardless of the initial atomic ratio. Accordingly, we develop a non-equiatomic alloy that utilizes spinodal decomposition to create a low-misfit coherent nanostructure combining a near-equiatomic disordered face-centered-cubic (FCC) matrix with high-content ductile Ni(3)Al-type ordered nanoprecipitates. We find that this spinodal order–disorder nanostructure contributes to a strength increase of ~1.5 GPa (>560%) relative to the HEA without precipitation, achieving one of the highest tensile strength (1.9 GPa) among all bulk HEAs reported previously while retaining good ductility (>9%). Nature Publishing Group UK 2018-10-03 /pmc/articles/PMC6170471/ /pubmed/30282971 http://dx.doi.org/10.1038/s41467-018-06600-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Liang, Yao-Jian
Wang, Linjing
Wen, Yuren
Cheng, Baoyuan
Wu, Qinli
Cao, Tangqing
Xiao, Qian
Xue, Yunfei
Sha, Gang
Wang, Yandong
Ren, Yang
Li, Xiaoyan
Wang, Lu
Wang, Fuchi
Cai, Hongnian
High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
title High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
title_full High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
title_fullStr High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
title_full_unstemmed High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
title_short High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
title_sort high-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170471/
https://www.ncbi.nlm.nih.gov/pubmed/30282971
http://dx.doi.org/10.1038/s41467-018-06600-8
work_keys_str_mv AT liangyaojian highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT wanglinjing highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT wenyuren highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT chengbaoyuan highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT wuqinli highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT caotangqing highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT xiaoqian highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT xueyunfei highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT shagang highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT wangyandong highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT renyang highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT lixiaoyan highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT wanglu highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT wangfuchi highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys
AT caihongnian highcontentductilecoherentnanoprecipitatesachieveultrastronghighentropyalloys