Cargando…

Analysis of the regulatory mechanism of deoxynivalenol production using omics

Fusarium species are plant pathogens that produce various mycotoxins. Here, the regulatory mechanism of deoxynivalenol production in Fusarium asiaticum was analyzed using proteomic, metabolomic and transcriptomic methods. F. asiaticum was induced to produce deoxynivalenol by adding agmatine to the c...

Descripción completa

Detalles Bibliográficos
Autor principal: Iwahashi, Yumiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170513/
https://www.ncbi.nlm.nih.gov/pubmed/30284112
http://dx.doi.org/10.1186/s13568-018-0688-y
Descripción
Sumario:Fusarium species are plant pathogens that produce various mycotoxins. Here, the regulatory mechanism of deoxynivalenol production in Fusarium asiaticum was analyzed using proteomic, metabolomic and transcriptomic methods. F. asiaticum was induced to produce deoxynivalenol by adding agmatine to the culture medium. Subsequently, metabolites of the glycolysis system were increased but mRNAs of the corresponding proteins were not up regulated. We speculated that this phenomenon was due to the up regulation of the 6-fructokinase and pyruvate kinase proteins, which are key enzymes of glycolysis. We discuss the relationship of metabolism with the regulation of deoxynivalenol production in F. asiaticum.