Cargando…
The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model
Geospatial tuberculosis (TB) hotspots are hubs of TB transmission both within and across community groups. We aimed to quantify the extent to which these hotspots account for the spatial spread of TB in a high-burden setting. We developed spatially coupled models to quantify the spread of TB from ge...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170575/ https://www.ncbi.nlm.nih.gov/pubmed/30839742 http://dx.doi.org/10.1098/rsos.180887 |
_version_ | 1783360676299800576 |
---|---|
author | Shaweno, Debebe Trauer, James M. Denholm, Justin T. McBryde, Emma S. |
author_facet | Shaweno, Debebe Trauer, James M. Denholm, Justin T. McBryde, Emma S. |
author_sort | Shaweno, Debebe |
collection | PubMed |
description | Geospatial tuberculosis (TB) hotspots are hubs of TB transmission both within and across community groups. We aimed to quantify the extent to which these hotspots account for the spatial spread of TB in a high-burden setting. We developed spatially coupled models to quantify the spread of TB from geographical hotspots to distant regions in rural Ethiopia. The population was divided into three ‘patches’ based on their proximity to transmission hotspots, namely hotspots, adjacent regions and remote regions. The models were fitted to 5-year notification data aggregated by the metapopulation structure. Model fitting was achieved with a Metropolis–Hastings algorithm using a Poisson likelihood to compare model-estimated notification rate with observed notification rates. A cross-coupled metapopulation model with assortative mixing by region closely fit to notification data as assessed by the deviance information criterion. We estimated 45 hotspot-to-adjacent regions transmission events and 2 hotspot-to-remote regions transmission events occurred for every 1000 hotspot-to-hotspot transmission events. Although the degree of spatial coupling was weak, the proportion of infections in the adjacent region that resulted from mixing with hotspots was high due to the high prevalence of TB cases in a hotspot region, with approximately 75% of infections attributable to hotspot contact. Our results suggest that the role of hotspots in the geospatial spread of TB in rural Ethiopia is limited, implying that TB transmission is primarily locally driven. |
format | Online Article Text |
id | pubmed-6170575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61705752018-10-18 The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model Shaweno, Debebe Trauer, James M. Denholm, Justin T. McBryde, Emma S. R Soc Open Sci Biology (Whole Organism) Geospatial tuberculosis (TB) hotspots are hubs of TB transmission both within and across community groups. We aimed to quantify the extent to which these hotspots account for the spatial spread of TB in a high-burden setting. We developed spatially coupled models to quantify the spread of TB from geographical hotspots to distant regions in rural Ethiopia. The population was divided into three ‘patches’ based on their proximity to transmission hotspots, namely hotspots, adjacent regions and remote regions. The models were fitted to 5-year notification data aggregated by the metapopulation structure. Model fitting was achieved with a Metropolis–Hastings algorithm using a Poisson likelihood to compare model-estimated notification rate with observed notification rates. A cross-coupled metapopulation model with assortative mixing by region closely fit to notification data as assessed by the deviance information criterion. We estimated 45 hotspot-to-adjacent regions transmission events and 2 hotspot-to-remote regions transmission events occurred for every 1000 hotspot-to-hotspot transmission events. Although the degree of spatial coupling was weak, the proportion of infections in the adjacent region that resulted from mixing with hotspots was high due to the high prevalence of TB cases in a hotspot region, with approximately 75% of infections attributable to hotspot contact. Our results suggest that the role of hotspots in the geospatial spread of TB in rural Ethiopia is limited, implying that TB transmission is primarily locally driven. The Royal Society 2018-09-19 /pmc/articles/PMC6170575/ /pubmed/30839742 http://dx.doi.org/10.1098/rsos.180887 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Biology (Whole Organism) Shaweno, Debebe Trauer, James M. Denholm, Justin T. McBryde, Emma S. The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model |
title | The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model |
title_full | The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model |
title_fullStr | The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model |
title_full_unstemmed | The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model |
title_short | The role of geospatial hotspots in the spatial spread of tuberculosis in rural Ethiopia: a mathematical model |
title_sort | role of geospatial hotspots in the spatial spread of tuberculosis in rural ethiopia: a mathematical model |
topic | Biology (Whole Organism) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170575/ https://www.ncbi.nlm.nih.gov/pubmed/30839742 http://dx.doi.org/10.1098/rsos.180887 |
work_keys_str_mv | AT shawenodebebe theroleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT trauerjamesm theroleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT denholmjustint theroleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT mcbrydeemmas theroleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT shawenodebebe roleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT trauerjamesm roleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT denholmjustint roleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel AT mcbrydeemmas roleofgeospatialhotspotsinthespatialspreadoftuberculosisinruralethiopiaamathematicalmodel |