Cargando…
MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()()
INTRODUCTION: Translocations of the anaplastic lymphoma kinase (ALK) can be effectively targeted in advanced non-small cell lung cancer by ALK-TKI inhibitors including Crizotinib. However, the development of acquired resistance often limits the duration of these therapies. While several mechanisms o...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171095/ https://www.ncbi.nlm.nih.gov/pubmed/30290287 http://dx.doi.org/10.1016/j.tranon.2018.09.013 |
_version_ | 1783360730066583552 |
---|---|
author | Rihawi, Karim Alfieri, Roberta Fiorentino, Michelangelo Fontana, Francesca Capizzi, Elisa Cavazzoni, Andrea Terracciano, Mario La Monica, Silvia Ferrarini, Alberto Buson, Genny Petronini, Pier Giorgio Ardizzoni, Andrea |
author_facet | Rihawi, Karim Alfieri, Roberta Fiorentino, Michelangelo Fontana, Francesca Capizzi, Elisa Cavazzoni, Andrea Terracciano, Mario La Monica, Silvia Ferrarini, Alberto Buson, Genny Petronini, Pier Giorgio Ardizzoni, Andrea |
author_sort | Rihawi, Karim |
collection | PubMed |
description | INTRODUCTION: Translocations of the anaplastic lymphoma kinase (ALK) can be effectively targeted in advanced non-small cell lung cancer by ALK-TKI inhibitors including Crizotinib. However, the development of acquired resistance often limits the duration of these therapies. While several mechanisms of secondary resistance have been already identified, little is known about molecular determinants of primary resistance. In our brief report we investigated the tumor molecular profile of a patient who failed to respond to Crizotinib. METHODS: Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were run on tumor specimen as well as search and characterization of circulating tumor cells (CTCs) in the blood. Confirmation of clinical findings was achieved using a translational cell-line in vitro model. RESULTS: We identified the amplification of MYC as a potential new mechanism of primary resistance to ALK inhibition. Human EML4-ALK rearranged cells infected with a lentiviral vector carrying full-length human MYC cDNA were treated in vitro with crizotinib and alectinib. Overexpression of MYC overexpression was associated with a reduced sensitivity to both ALK-inhibitors. MYC-overexpressing clones displayed also increased levels of both cyclin D and E and their growth was reduced by using Cdk4/6 inhibitors such as Palbociclib. CONCLUSIONS: We postulate that the MYC gene may be implicated in the mechanism of primary resistance to ALK inhibitors. We also suggest potential MYC-directed inhibition strategies to overcome primary resistance in advanced ALK-rearranged NSCLC. |
format | Online Article Text |
id | pubmed-6171095 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Neoplasia Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61710952018-10-10 MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() Rihawi, Karim Alfieri, Roberta Fiorentino, Michelangelo Fontana, Francesca Capizzi, Elisa Cavazzoni, Andrea Terracciano, Mario La Monica, Silvia Ferrarini, Alberto Buson, Genny Petronini, Pier Giorgio Ardizzoni, Andrea Transl Oncol Original article INTRODUCTION: Translocations of the anaplastic lymphoma kinase (ALK) can be effectively targeted in advanced non-small cell lung cancer by ALK-TKI inhibitors including Crizotinib. However, the development of acquired resistance often limits the duration of these therapies. While several mechanisms of secondary resistance have been already identified, little is known about molecular determinants of primary resistance. In our brief report we investigated the tumor molecular profile of a patient who failed to respond to Crizotinib. METHODS: Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were run on tumor specimen as well as search and characterization of circulating tumor cells (CTCs) in the blood. Confirmation of clinical findings was achieved using a translational cell-line in vitro model. RESULTS: We identified the amplification of MYC as a potential new mechanism of primary resistance to ALK inhibition. Human EML4-ALK rearranged cells infected with a lentiviral vector carrying full-length human MYC cDNA were treated in vitro with crizotinib and alectinib. Overexpression of MYC overexpression was associated with a reduced sensitivity to both ALK-inhibitors. MYC-overexpressing clones displayed also increased levels of both cyclin D and E and their growth was reduced by using Cdk4/6 inhibitors such as Palbociclib. CONCLUSIONS: We postulate that the MYC gene may be implicated in the mechanism of primary resistance to ALK inhibitors. We also suggest potential MYC-directed inhibition strategies to overcome primary resistance in advanced ALK-rearranged NSCLC. Neoplasia Press 2018-10-02 /pmc/articles/PMC6171095/ /pubmed/30290287 http://dx.doi.org/10.1016/j.tranon.2018.09.013 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original article Rihawi, Karim Alfieri, Roberta Fiorentino, Michelangelo Fontana, Francesca Capizzi, Elisa Cavazzoni, Andrea Terracciano, Mario La Monica, Silvia Ferrarini, Alberto Buson, Genny Petronini, Pier Giorgio Ardizzoni, Andrea MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() |
title | MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() |
title_full | MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() |
title_fullStr | MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() |
title_full_unstemmed | MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() |
title_short | MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report()() |
title_sort | myc amplification as a potential mechanism of primary resistance to crizotinib in alk-rearranged non-small cell lung cancer: a brief report()() |
topic | Original article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171095/ https://www.ncbi.nlm.nih.gov/pubmed/30290287 http://dx.doi.org/10.1016/j.tranon.2018.09.013 |
work_keys_str_mv | AT rihawikarim mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT alfieriroberta mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT fiorentinomichelangelo mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT fontanafrancesca mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT capizzielisa mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT cavazzoniandrea mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT terraccianomario mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT lamonicasilvia mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT ferrarinialberto mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT busongenny mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT petroninipiergiorgio mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport AT ardizzoniandrea mycamplificationasapotentialmechanismofprimaryresistancetocrizotinibinalkrearrangednonsmallcelllungcancerabriefreport |