Cargando…

Combining controls can improve power in two-stage association studies

BACKGROUND: High dimensional case control studies are ubiquitous in the biological sciences, particularly genomics. To maximise power while constraining cost and to minimise type-1 error rates, researchers typically seek to replicate findings in a second experiment on independent cohorts before proc...

Descripción completa

Detalles Bibliográficos
Autor principal: Liley, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171163/
https://www.ncbi.nlm.nih.gov/pubmed/30285617
http://dx.doi.org/10.1186/s12863-018-0675-y
Descripción
Sumario:BACKGROUND: High dimensional case control studies are ubiquitous in the biological sciences, particularly genomics. To maximise power while constraining cost and to minimise type-1 error rates, researchers typically seek to replicate findings in a second experiment on independent cohorts before proceeding with further analyses. This can be an expensive procedure, particularly when control samples are difficult to recruit or ascertain; for example in inter-disease comparisons, or studies on degenerative diseases. RESULTS: This paper presents a method in which control (or case) samples from the discovery cohort are re-used in a replication study. The theoretical implications of this method are discussed and simulated genome-wide association study (GWAS) tests are used to compare performance against the standard approach in a range of circumstances. Using similar methods, a procedure is proposed for ‘partial replication’ using a new independent cohort consisting of only controls. This methods can be used to provide some validation of findings when a full replication procedure is not possible. The new method has differing sensitivity to confounding in study cohorts compared to the standard procedure, which must be considered in its application. Type-1 error rates in these scenarios are analytically and empirically derived, and an online tool for comparing power and error rates is provided. CONCLUSIONS: In several common study designs, a shared-control method allows a substantial improvement in power while retaining type-1 error rate control. Although careful consideration must be made of all necessary assumptions, this method can enable more efficient use of data in GWAS and other applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12863-018-0675-y) contains supplementary material, which is available to authorized users.