Cargando…
Deep learning in chest radiography: Detection of findings and presence of change
BACKGROUND: Deep learning (DL) based solutions have been proposed for interpretation of several imaging modalities including radiography, CT, and MR. For chest radiographs, DL algorithms have found success in the evaluation of abnormalities such as lung nodules, pulmonary tuberculosis, cystic fibros...
Autores principales: | Singh, Ramandeep, Kalra, Mannudeep K., Nitiwarangkul, Chayanin, Patti, John A., Homayounieh, Fatemeh, Padole, Atul, Rao, Pooja, Putha, Preetham, Muse, Victorine V., Sharma, Amita, Digumarthy, Subba R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171827/ https://www.ncbi.nlm.nih.gov/pubmed/30286097 http://dx.doi.org/10.1371/journal.pone.0204155 |
Ejemplares similares
-
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
por: Kaviani, Parisa, et al.
Publicado: (2022) -
CT texture analysis of histologically proven benign and malignant lung lesions
por: Digumarthy, Subba R., et al.
Publicado: (2018) -
Radiomic features of primary tumor by lung cancer stage: analysis in BRAF mutated non-small cell lung cancer
por: Padole, Atul, et al.
Publicado: (2020) -
Association of AI quantified COVID-19 chest CT and patient outcome
por: Fang, Xi, et al.
Publicado: (2021) -
Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status?
por: Digumarthy, Subba R., et al.
Publicado: (2019)