Cargando…

Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha

The liverwort Marchantia polymorpha is an emerging model species for basal lineage plant research. In this study, two Gateway cloning-compatible binary vector series, R4pMpGWB and R4L1pMpGWB, were generated to facilitate production of transgenic M. polymorpha. The R4pMpGWB series allows tripartite r...

Descripción completa

Detalles Bibliográficos
Autores principales: Mano, Shoji, Nishihama, Ryuichi, Ishida, Sakiko, Hikino, Kazumi, Kondo, Maki, Nishimura, Mikio, Yamato, Katsuyuki T., Kohchi, Takayuki, Nakagawa, Tsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171868/
https://www.ncbi.nlm.nih.gov/pubmed/30286137
http://dx.doi.org/10.1371/journal.pone.0204964
Descripción
Sumario:The liverwort Marchantia polymorpha is an emerging model species for basal lineage plant research. In this study, two Gateway cloning-compatible binary vector series, R4pMpGWB and R4L1pMpGWB, were generated to facilitate production of transgenic M. polymorpha. The R4pMpGWB series allows tripartite recombination of any promoter and any coding sequence with a specific reporter or tag. Reporters/tags for the R4pMpGWB series are GUS, ELuc(PEST), FLAG, 3×HA, 4×Myc, mRFP1, Citrine, mCitrine, ER-targeted mCitrine and nucleus-targeted mCitrine. The R4L1pMpGWB series is suitable for promoter analysis. R4L1pMpGWB vector structure is the same as that of R4pMpGWB vectors, except that the attR2 site is replaced with attL1, enabling bipartite recombination of any promoter with a reporter or tag. Reporters/tags for the R4L1pMpGWB series are GUS, G3GFP-GUS, LUC, ELuc(PEST), Citrine, mCitrine, ER-targeted mCitrine and mCitrine-NLS. Both vector series were functional in M. polymorpha cells. These vectors will facilitate the design and assembly of plasmid constructs and generation of transgenic M. polymorpha.