Cargando…

Microbial enrichment and gene functional categories revealed on the walls of a spent fuel pool of a nuclear power plant

Microorganisms developing in the liner of the spent fuel pool (SFP) and the fuel transfer channel (FTC) of a Nuclear Power Plant (NPP) can form high radiation resistant biofilms and cause corrosion. Due to difficulties and limitations to obtain large samples from SFP and FTC, cotton swabs were used...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Rosane, de Almeida, Darcy Muniz, Cabral, Bianca Catarina Azeredo, Dias, Victor Hugo Giordano, Mello, Isadora Cristina de Toledo e, Ürményi, Turán Péter, Woerner, August E., Neto, Rodrigo Soares de Moura, Budowle, Bruce, Nassar, Cristina Aparecida Gomes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171911/
https://www.ncbi.nlm.nih.gov/pubmed/30286173
http://dx.doi.org/10.1371/journal.pone.0205228
Descripción
Sumario:Microorganisms developing in the liner of the spent fuel pool (SFP) and the fuel transfer channel (FTC) of a Nuclear Power Plant (NPP) can form high radiation resistant biofilms and cause corrosion. Due to difficulties and limitations to obtain large samples from SFP and FTC, cotton swabs were used to collect the biofilm from the wall of these installations. Molecular characterization was performed using massively parallel sequencing to obtain a taxonomic and functional gene classification. Also, samples from the drainage system were evaluated because microorganisms may travel over the 12-meter column of the pool water of the Brazilian Nuclear Power Plant (Angra1), which has been functioning since 1985. Regardless of the treatment of the pool water, our data reveal the unexpected presence of Fungi (Basidiomycota and Ascomycota) as the main contaminators of the SFP and FTC. Ustilaginomycetes (Basidiomycota) was the major class contributor (70%) in the SFP and FTC reflecting the little diversity in these sites; nevertheless, Proteobacteria, Actinobacteria, Firmicutes (Bacilli) were present in small proportions. Mapping total reads against six fungal reference genomes indicate that there is, in fact, a high abundance of fungal sequences in samples collected from SFP and FTC. Analysis of the ribosomal internal transcribed spacer (ITS) 1 and 2 regions and the protein found in the mitochondria of eukaryotic cells, cytochrome b (cytb) grouped our sample fungi in the clade 7 as Ustilago and Pseudozyma. In contrast, in the drainage system, Alphaproteobacteria were present in high abundances (55%). The presence of Sphingopyxis, Mesorhizobium, Erythrobacter, Sphingomonas, Novosphingobium, Sphingobium, Chelativorans, Oceanicaulis, Acidovorax, and Cyanobacteria was observed. Based on genomic annotation data, the assessment of the biological function found a higher proportion of protein-coding sequences related to respiration and protein metabolism in SFP and FTC samples. The knowledge of this biological inventory present in the system may contribute to further studies of potential microorganisms that might be useful for bioremediation of nuclear waste.