Cargando…
Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods
BACKGROUND: Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions ab...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172189/ https://www.ncbi.nlm.nih.gov/pubmed/29753683 http://dx.doi.org/10.1016/j.jneumeth.2018.04.021 |
_version_ | 1783360891406778368 |
---|---|
author | Müller, Michael Schindler, Kaspar Goodfellow, Marc Pollo, Claudio Rummel, Christian Steimer, Andreas |
author_facet | Müller, Michael Schindler, Kaspar Goodfellow, Marc Pollo, Claudio Rummel, Christian Steimer, Andreas |
author_sort | Müller, Michael |
collection | PubMed |
description | BACKGROUND: Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing. NEW METHOD: As one possibility to address this, we use customized hypotheses tests to examine the agreement of the methods on a common set of patients. One method uses machine learning techniques to enable the predictive modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance gain that can be expected when combining them. RESULTS: Both methods’ assessments correlate strongly positively with the similarity between a hypothetical resection and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation between the methods’ patient rankings is significantly positive. COMPARISON WITH EXISTING METHOD(S): To our best knowledge, this is the first study comparing surgery target assessments from fundamentally differing techniques. CONCLUSIONS: Although conceptually completely independent, there is a relation between the predictions obtained from both methods. Their broad consensus supports their application in clinical practice to provide physicians additional information in the process of presurgical evaluation. |
format | Online Article Text |
id | pubmed-6172189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier/North-Holland Biomedical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61721892018-10-10 Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods Müller, Michael Schindler, Kaspar Goodfellow, Marc Pollo, Claudio Rummel, Christian Steimer, Andreas J Neurosci Methods Article BACKGROUND: Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing. NEW METHOD: As one possibility to address this, we use customized hypotheses tests to examine the agreement of the methods on a common set of patients. One method uses machine learning techniques to enable the predictive modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance gain that can be expected when combining them. RESULTS: Both methods’ assessments correlate strongly positively with the similarity between a hypothetical resection and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation between the methods’ patient rankings is significantly positive. COMPARISON WITH EXISTING METHOD(S): To our best knowledge, this is the first study comparing surgery target assessments from fundamentally differing techniques. CONCLUSIONS: Although conceptually completely independent, there is a relation between the predictions obtained from both methods. Their broad consensus supports their application in clinical practice to provide physicians additional information in the process of presurgical evaluation. Elsevier/North-Holland Biomedical Press 2018-07-15 /pmc/articles/PMC6172189/ /pubmed/29753683 http://dx.doi.org/10.1016/j.jneumeth.2018.04.021 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Müller, Michael Schindler, Kaspar Goodfellow, Marc Pollo, Claudio Rummel, Christian Steimer, Andreas Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods |
title | Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods |
title_full | Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods |
title_fullStr | Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods |
title_full_unstemmed | Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods |
title_short | Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods |
title_sort | evaluating resective surgery targets in epilepsy patients: a comparison of quantitative eeg methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172189/ https://www.ncbi.nlm.nih.gov/pubmed/29753683 http://dx.doi.org/10.1016/j.jneumeth.2018.04.021 |
work_keys_str_mv | AT mullermichael evaluatingresectivesurgerytargetsinepilepsypatientsacomparisonofquantitativeeegmethods AT schindlerkaspar evaluatingresectivesurgerytargetsinepilepsypatientsacomparisonofquantitativeeegmethods AT goodfellowmarc evaluatingresectivesurgerytargetsinepilepsypatientsacomparisonofquantitativeeegmethods AT polloclaudio evaluatingresectivesurgerytargetsinepilepsypatientsacomparisonofquantitativeeegmethods AT rummelchristian evaluatingresectivesurgerytargetsinepilepsypatientsacomparisonofquantitativeeegmethods AT steimerandreas evaluatingresectivesurgerytargetsinepilepsypatientsacomparisonofquantitativeeegmethods |