Cargando…
Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
BACKGROUND: To develop a deep neural network able to differentiate glaucoma from non-glaucoma visual fields based on visual filed (VF) test results, we collected VF tests from 3 different ophthalmic centers in mainland China. METHODS: Visual fields obtained by both Humphrey 30–2 and 24–2 tests were...
Autores principales: | Li, Fei, Wang, Zhe, Qu, Guoxiang, Song, Diping, Yuan, Ye, Xu, Yang, Gao, Kai, Luo, Guangwei, Xiao, Zegu, Lam, Dennis S. C., Zhong, Hua, Qiao, Yu, Zhang, Xiulan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172715/ https://www.ncbi.nlm.nih.gov/pubmed/30286740 http://dx.doi.org/10.1186/s12880-018-0273-5 |
Ejemplares similares
-
Correction to: Automatic differentiation of Glaucoma visual field from non-glaucoma visual field using deep convolutional neural network
por: Li, Fei, et al.
Publicado: (2019) -
Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection
por: Li, Fei, et al.
Publicado: (2020) -
Author Correction: Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection
por: Li, Fei, et al.
Publicado: (2022) -
A deep learning approach to automatic detection of early glaucoma from visual fields
por: Kucur, Şerife Seda, et al.
Publicado: (2018) -
Visual Field Progression After Glaucoma Surgery in Pseudoexfoliation versus Primary Glaucoma
por: Rao, Aparna, et al.
Publicado: (2023)