Cargando…
Eyes-Closed Increases the Usability of Brain-Computer Interfaces Based on Auditory Event-Related Potentials
Recent research has demonstrated how brain-computer interfaces (BCI) based on auditory stimuli can be used for communication and rehabilitation. In these applications, users are commonly instructed to avoid eye movements while keeping their eyes open. This secondary task can lead to exhaustion and s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172854/ https://www.ncbi.nlm.nih.gov/pubmed/30323749 http://dx.doi.org/10.3389/fnhum.2018.00391 |
Sumario: | Recent research has demonstrated how brain-computer interfaces (BCI) based on auditory stimuli can be used for communication and rehabilitation. In these applications, users are commonly instructed to avoid eye movements while keeping their eyes open. This secondary task can lead to exhaustion and subjects may not succeed in suppressing eye movements. In this work, we investigate the option to use a BCI with eyes-closed. Twelve healthy subjects participated in a single electroencephalography (EEG) session where they were listening to a rapid stream of bisyllabic words while alternatively having their eyes open or closed. In addition, we assessed usability aspects for the two conditions with a questionnaire. Our analysis shows that eyes-closed does not reduce the number of eye artifacts and that event-related potential (ERP) responses and classification accuracies are comparable between both conditions. Importantly, we found that subjects expressed a significant general preference toward the eyes-closed condition and were also less tensed in that condition. Furthermore, switching between eyes-closed and eyes-open and vice versa is possible without a severe drop in classification accuracy. These findings suggest that eyes-closed should be considered as a viable alternative in auditory BCIs that might be especially useful for subjects with limited control over their eye movements. |
---|