Cargando…

Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae

The biological conversion of lignocellulosic matter into high-value chemicals or biofuels is of increasing industrial importance as the sector slowly transitions away from nonrenewable sources. Many industrial processes involve the use of cellulolytic enzyme cocktails – a selection of glycoside hydr...

Descripción completa

Detalles Bibliográficos
Autores principales: Fowler, Claire A., Hemsworth, Glyn R., Cuskin, Fiona, Hart, Sam, Turkenburg, Johan, Gilbert, Harry J., Walton, Paul H., Davies, Gideon J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173055/
https://www.ncbi.nlm.nih.gov/pubmed/30289404
http://dx.doi.org/10.1107/S2059798318009737
Descripción
Sumario:The biological conversion of lignocellulosic matter into high-value chemicals or biofuels is of increasing industrial importance as the sector slowly transitions away from nonrenewable sources. Many industrial processes involve the use of cellulolytic enzyme cocktails – a selection of glycoside hydrolases and, increasingly, polysaccharide oxygenases – to break down recalcitrant plant polysaccharides. ORFs from the genome of Teredinibacter turnerae, a symbiont hosted within the gills of marine shipworms, were identified in order to search for enzymes with desirable traits. Here, a putative T. turnerae glycoside hydrolase from family 8, hereafter referred to as TtGH8, is analysed. The enzyme is shown to be active against β-1,4-xylan and mixed-linkage (β-1,3,β-1,4) marine xylan. Kinetic parameters, obtained using high-performance anion-exchange chromatography with pulsed amperometric detection and 3,5-dinitrosalicyclic acid reducing-sugar assays, show that TtGH8 catalyses the hydrolysis of β-1,4-xylohexaose with a k (cat)/K (m) of 7.5 × 10(7)  M (−1) min(−1) but displays maximal activity against mixed-linkage polymeric xylans, hinting at a primary role in the degradation of marine polysaccharides. The three-dimensional structure of TtGH8 was solved in uncomplexed and xylobiose-, xylotriose- and xylohexaose-bound forms at approximately 1.5 Å resolution; the latter was consistent with the greater k (cat)/K (m) for hexasaccharide substrates. A (2,5) B boat conformation observed in the −1 position of bound xylotriose is consistent with the proposed conformational itinerary for this class of enzyme. This work shows TtGH8 to be effective at the degradation of xylan-based substrates, notably marine xylan, further exemplifying the potential of T. turnerae for effective and diverse biomass degradation.