Cargando…
Burn injury alters the intestinal microbiome’s taxonomic composition and functional gene expression
Burn patients have a high risk of sepsis-related mortality even after surviving the initial injury. Immunosuppression increases the risk of sepsis after burn injury, as does the disruption of the intestinal epithelial barrier, which allows the translocation of bacteria and bacterial products into th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173435/ https://www.ncbi.nlm.nih.gov/pubmed/30289947 http://dx.doi.org/10.1371/journal.pone.0205307 |
Sumario: | Burn patients have a high risk of sepsis-related mortality even after surviving the initial injury. Immunosuppression increases the risk of sepsis after burn injury, as does the disruption of the intestinal epithelial barrier, which allows the translocation of bacteria and bacterial products into the circulation. The integrity of the intestinal epithelial barrier is largely maintained by the intestinal microbiota. Burn injury has been reported to result in significant changes in the intestinal microbiome composition. In this mouse study, we confirm these taxonomic differences in a full-thickness scald injury model using CF-1 mice. For the first time, we also address alterations in functional gene expression of the intestinal microbiota after burn injury to assess the microbiome’s physiological capabilities for overgrowth and pathogenic invasion: 38 pathways were differentially abundant between the sham and burn injury mice, including bacterial invasion of epithelial cells and gap- and adherens junction pathways. |
---|