Cargando…
Development of parallel reaction monitoring (PRM)-based quantitative proteomics applied to HER2-Positive breast cancer
INTRODUCTION: treatments targeting the Human Epidermal Growth Factor Receptor 2 (HER2/ERBB2) have improved the natural history of HER2-positive breast cancer. However, except HER2 protein expression and gene amplification, there is no predictive biomarker to guide the HER2-targeted therapies. We dev...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173470/ https://www.ncbi.nlm.nih.gov/pubmed/30333908 http://dx.doi.org/10.18632/oncotarget.26031 |
Sumario: | INTRODUCTION: treatments targeting the Human Epidermal Growth Factor Receptor 2 (HER2/ERBB2) have improved the natural history of HER2-positive breast cancer. However, except HER2 protein expression and gene amplification, there is no predictive biomarker to guide the HER2-targeted therapies. We developed Parallel reaction monitoring (PRM) a powerful approach, to quantify and evaluate key proteins involved in the HER2 pathway and/or anti-HER2 treatment sensitivity. RESULTS: in BCLs, PRM measurements correlated with western blot immunocytochemistry and transcriptomic data. At baseline, higher expression of HER2, EGFR, PTEN and HER3 but lower expression of phospho-HER2 correlated with trastuzumab sensitivity. Under trastuzumab, PRM demonstrated a decrease in HER2 and an increase in phospho-HER2, which correlated with drug sensitivity. The opposite was observed under lapatinib. HER2 quantification was also correlated with immunohistochemistry in PDXs and clinical breast cancer samples. DISCUSSION: in conclusion, PRM-based assay, developed to quantify proteins of the HER2 pathway in breast cancer samples revealed a large magnitude of expression, which may have relevance in terms of treatment sensitivity. MATERIALS AND METHODS: we first evaluated PRM in term of sensitivity, linearity and reproducibility. PRM was then applied to breast cancer cell lines (BCLs) including BCLs exposed to anti-HER2 agents, patient-derived xenografts (PDXs) and frozen breast cancer samples. |
---|