Cargando…
Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel
[Image: see text] Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apopto...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173511/ https://www.ncbi.nlm.nih.gov/pubmed/30320261 http://dx.doi.org/10.1021/acsomega.8b01536 |
_version_ | 1783361146495959040 |
---|---|
author | Manzo, Giorgia Serra, Ilaria Magrí, Andrea Casu, Mariano De Pinto, Vito Ceccarelli, Matteo Scorciapino, Mariano Andrea |
author_facet | Manzo, Giorgia Serra, Ilaria Magrí, Andrea Casu, Mariano De Pinto, Vito Ceccarelli, Matteo Scorciapino, Mariano Andrea |
author_sort | Manzo, Giorgia |
collection | PubMed |
description | [Image: see text] Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs’ functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main β-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel’s wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the β-barrel domain, the observed differences are relevant for those whole protein’s functions in which a protein–protein interaction is mediated by the N-terminal domain. |
format | Online Article Text |
id | pubmed-6173511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61735112018-10-11 Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel Manzo, Giorgia Serra, Ilaria Magrí, Andrea Casu, Mariano De Pinto, Vito Ceccarelli, Matteo Scorciapino, Mariano Andrea ACS Omega [Image: see text] Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs’ functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main β-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel’s wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the β-barrel domain, the observed differences are relevant for those whole protein’s functions in which a protein–protein interaction is mediated by the N-terminal domain. American Chemical Society 2018-09-19 /pmc/articles/PMC6173511/ /pubmed/30320261 http://dx.doi.org/10.1021/acsomega.8b01536 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Manzo, Giorgia Serra, Ilaria Magrí, Andrea Casu, Mariano De Pinto, Vito Ceccarelli, Matteo Scorciapino, Mariano Andrea Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel |
title | Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel |
title_full | Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel |
title_fullStr | Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel |
title_full_unstemmed | Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel |
title_short | Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel |
title_sort | folded structure and membrane affinity of the n-terminal domain of the three human isoforms of the mitochondrial voltage-dependent anion-selective channel |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173511/ https://www.ncbi.nlm.nih.gov/pubmed/30320261 http://dx.doi.org/10.1021/acsomega.8b01536 |
work_keys_str_mv | AT manzogiorgia foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel AT serrailaria foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel AT magriandrea foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel AT casumariano foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel AT depintovito foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel AT ceccarellimatteo foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel AT scorciapinomarianoandrea foldedstructureandmembraneaffinityofthenterminaldomainofthethreehumanisoformsofthemitochondrialvoltagedependentanionselectivechannel |