Cargando…
Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis
BACKGROUND: To investigate the effect of machine learning methods on predicting the Overall Survival (OS) for non-small cell lung cancer based on radiomics features analysis. METHODS: A total of 339 radiomic features were extracted from the segmented tumor volumes of pretreatment computed tomography...
Autores principales: | Sun, Wenzheng, Jiang, Mingyan, Dang, Jun, Chang, Panchun, Yin, Fang-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173915/ https://www.ncbi.nlm.nih.gov/pubmed/30290849 http://dx.doi.org/10.1186/s13014-018-1140-9 |
Ejemplares similares
-
An investigation of machine learning methods in delta-radiomics feature analysis
por: Chang, Yushi, et al.
Publicado: (2019) -
Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients
por: Chato, Lina, et al.
Publicado: (2021) -
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
por: Baid, Ujjwal, et al.
Publicado: (2020) -
Real-Time Respiratory Tumor Motion Prediction Based on a Temporal Convolutional Neural Network: Prediction Model Development Study
por: Chang, Panchun, et al.
Publicado: (2021) -
Nomograms integrating CT radiomic and deep learning signatures to predict overall survival and progression-free survival in NSCLC patients treated with chemotherapy
por: Chang, Runsheng, et al.
Publicado: (2023)