Cargando…
Clustering of fMRI data: the elusive optimal number of clusters
Model-free methods are widely used for the processing of brain fMRI data collected under natural stimulations, sleep, or rest. Among them is the popular fuzzy c-mean algorithm, commonly combined with cluster validity (CV) indices to identify the ‘true’ number of clusters (components), in an unsuperv...
Autor principal: | Seghier, Mohamed L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173948/ https://www.ncbi.nlm.nih.gov/pubmed/30310731 http://dx.doi.org/10.7717/peerj.5416 |
Ejemplares similares
-
Educational fMRI: From the Lab to the Classroom
por: Seghier, Mohamed L., et al.
Publicado: (2019) -
Taxonomy Informed Clustering, an Optimized Method for Purer and More Informative Clusters in Diversity Analysis and Microbiome Profiling
por: Kioukis, Antonios, et al.
Publicado: (2022) -
Using network clustering to predict copy number variations associated with health disparities
por: Jiang, Yi, et al.
Publicado: (2015) -
ClusterEnG: an interactive educational web resource for clustering and visualizing high-dimensional data
por: Manjunath, Mohith, et al.
Publicado: (2018) -
An Efficient GUI-Based Clustering Software for Simulation and Bayesian Cluster Analysis of Single-Molecule Localization Microscopy Data
por: Kutz, Saskia, et al.
Publicado: (2021)