Cargando…

Functional plasticity of antibacterial EndoU toxins

Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact‐dependent growth inhibition toxin CdiA‐CT(STECO31) from Escherichi...

Descripción completa

Detalles Bibliográficos
Autores principales: Michalska, Karolina, Quan Nhan, Dinh, Willett, Julia L. E., Stols, Lucy M., Eschenfeldt, William H., Jones, Allison M., Nguyen, Josephine Y., Koskiniemi, Sanna, Low, David A., Goulding, Celia W., Joachimiak, Andrzej, Hayes, Christopher S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173971/
https://www.ncbi.nlm.nih.gov/pubmed/29923643
http://dx.doi.org/10.1111/mmi.14007
_version_ 1783361220974215168
author Michalska, Karolina
Quan Nhan, Dinh
Willett, Julia L. E.
Stols, Lucy M.
Eschenfeldt, William H.
Jones, Allison M.
Nguyen, Josephine Y.
Koskiniemi, Sanna
Low, David A.
Goulding, Celia W.
Joachimiak, Andrzej
Hayes, Christopher S.
author_facet Michalska, Karolina
Quan Nhan, Dinh
Willett, Julia L. E.
Stols, Lucy M.
Eschenfeldt, William H.
Jones, Allison M.
Nguyen, Josephine Y.
Koskiniemi, Sanna
Low, David A.
Goulding, Celia W.
Joachimiak, Andrzej
Hayes, Christopher S.
author_sort Michalska, Karolina
collection PubMed
description Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact‐dependent growth inhibition toxin CdiA‐CT(STECO31) from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His‐His‐Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate‐specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N‐terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA‐CT(STECO31) and other clade III toxins are specific anticodon nucleases that cleave tRNA(Glu) between nucleotides C37 and m(2)A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter‐bacterial toxin delivery systems.
format Online
Article
Text
id pubmed-6173971
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-61739712019-08-12 Functional plasticity of antibacterial EndoU toxins Michalska, Karolina Quan Nhan, Dinh Willett, Julia L. E. Stols, Lucy M. Eschenfeldt, William H. Jones, Allison M. Nguyen, Josephine Y. Koskiniemi, Sanna Low, David A. Goulding, Celia W. Joachimiak, Andrzej Hayes, Christopher S. Mol Microbiol Research Articles Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact‐dependent growth inhibition toxin CdiA‐CT(STECO31) from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His‐His‐Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate‐specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N‐terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA‐CT(STECO31) and other clade III toxins are specific anticodon nucleases that cleave tRNA(Glu) between nucleotides C37 and m(2)A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter‐bacterial toxin delivery systems. John Wiley and Sons Inc. 2018-08-12 2018-08 /pmc/articles/PMC6173971/ /pubmed/29923643 http://dx.doi.org/10.1111/mmi.14007 Text en © 2018 John Wiley & Sons Ltd This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
spellingShingle Research Articles
Michalska, Karolina
Quan Nhan, Dinh
Willett, Julia L. E.
Stols, Lucy M.
Eschenfeldt, William H.
Jones, Allison M.
Nguyen, Josephine Y.
Koskiniemi, Sanna
Low, David A.
Goulding, Celia W.
Joachimiak, Andrzej
Hayes, Christopher S.
Functional plasticity of antibacterial EndoU toxins
title Functional plasticity of antibacterial EndoU toxins
title_full Functional plasticity of antibacterial EndoU toxins
title_fullStr Functional plasticity of antibacterial EndoU toxins
title_full_unstemmed Functional plasticity of antibacterial EndoU toxins
title_short Functional plasticity of antibacterial EndoU toxins
title_sort functional plasticity of antibacterial endou toxins
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173971/
https://www.ncbi.nlm.nih.gov/pubmed/29923643
http://dx.doi.org/10.1111/mmi.14007
work_keys_str_mv AT michalskakarolina functionalplasticityofantibacterialendoutoxins
AT quannhandinh functionalplasticityofantibacterialendoutoxins
AT willettjuliale functionalplasticityofantibacterialendoutoxins
AT stolslucym functionalplasticityofantibacterialendoutoxins
AT eschenfeldtwilliamh functionalplasticityofantibacterialendoutoxins
AT jonesallisonm functionalplasticityofantibacterialendoutoxins
AT nguyenjosephiney functionalplasticityofantibacterialendoutoxins
AT koskiniemisanna functionalplasticityofantibacterialendoutoxins
AT lowdavida functionalplasticityofantibacterialendoutoxins
AT gouldingceliaw functionalplasticityofantibacterialendoutoxins
AT joachimiakandrzej functionalplasticityofantibacterialendoutoxins
AT hayeschristophers functionalplasticityofantibacterialendoutoxins