Cargando…
Nonadiabatic Excited-State Dynamics with Machine Learning
[Image: see text] We show that machine learning (ML) can be used to accurately reproduce nonadiabatic excited-state dynamics with decoherence-corrected fewest switches surface hopping in a 1-D model system. We propose to use ML to significantly reduce the simulation time of realistic, high-dimension...
Autores principales: | Dral, Pavlo O., Barbatti, Mario, Thiel, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174422/ https://www.ncbi.nlm.nih.gov/pubmed/30200766 http://dx.doi.org/10.1021/acs.jpclett.8b02469 |
Ejemplares similares
-
Machine Learning for Absorption Cross Sections
por: Xue, Bao-Xin, et al.
Publicado: (2020) -
Choosing the right molecular machine learning potential
por: Pinheiro, Max, et al.
Publicado: (2021) -
Nonadiabatic dynamics in multidimensional complex potential energy surfaces
por: Kossoski, Fábris, et al.
Publicado: (2020) -
Machine Learning of Parameters for Accurate Semiempirical
Quantum Chemical Calculations
por: Dral, Pavlo O., et al.
Publicado: (2015) -
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021)