Cargando…
Detecting Depression Using an Ensemble Logistic Regression Model Based on Multiple Speech Features
Early intervention for depression is very important to ease the disease burden, but current diagnostic methods are still limited. This study investigated automatic depressed speech classification in a sample of 170 native Chinese subjects (85 healthy controls and 85 depressed patients). The classifi...
Autores principales: | Jiang, Haihua, Hu, Bin, Liu, Zhenyu, Wang, Gang, Zhang, Lan, Li, Xiaoyu, Kang, Huanyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174772/ https://www.ncbi.nlm.nih.gov/pubmed/30344616 http://dx.doi.org/10.1155/2018/6508319 |
Ejemplares similares
-
Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection
por: Liu, Zhenyu, et al.
Publicado: (2023) -
Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble
por: Wang, Hong, et al.
Publicado: (2015) -
Automatic Detection of Depression in Speech Using Ensemble Convolutional Neural Networks
por: Vázquez-Romero, Adrián, et al.
Publicado: (2020) -
Identification of miRNA biomarkers for breast cancer by combining ensemble regularized multinomial logistic regression and Cox regression
por: Li, Juntao, et al.
Publicado: (2022) -
Inconsistency Between Univariate and Multiple Logistic Regressions
por: WANG, Hongyue, et al.
Publicado: (2017)