Cargando…

Immobilization of a Laccase/2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic Acid System to Layered Double Hydroxide/Alginate Biohybrid Beads for Biodegradation of Malachite Green Dye

The application of laccase-mediator-based catalysis is limited owing to the high cost of laccases and mediators and the potential toxicity of free mediators. Here, a novel biocatalyst (Im-LMS) was fabricated by immobilizing both laccase and a mediator (2,2'-azino-bis-[3-ethylbenzothiazoline]-6-...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Juan, Yang, Yun, Wang, Yaokun, Zhang, Mingyang, Liu, Youxun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174817/
https://www.ncbi.nlm.nih.gov/pubmed/30345302
http://dx.doi.org/10.1155/2018/5471961
Descripción
Sumario:The application of laccase-mediator-based catalysis is limited owing to the high cost of laccases and mediators and the potential toxicity of free mediators. Here, a novel biocatalyst (Im-LMS) was fabricated by immobilizing both laccase and a mediator (2,2'-azino-bis-[3-ethylbenzothiazoline]-6-sulfonic acid) on layered double hydroxide/alginate biohybrid beads. The catalytic activity of Im-LMS was evaluated for dye decolorization using malachite green. The decolorization yields of malachite green by Im-LMS and the free laccase-mediator system were 92% within 120 min and 90% within 90 min. Malachite green solution was detoxified completely after biodegradation by Im-LMS. Following eight reuse cycles of Im-LMS for dye treatment, a decolorization yield of 79% was obtained. The activity of Im-LMS was almost completely stable after being stored for 10 days. The recyclability and stability of Im-LMS will be helpful for reducing the running cost and potential toxicity associated with mediators to facilitate practical applications.