Cargando…

Identification of Candidate Biomarkers in Malignant Ascites from Patients with Hepatocellular Carcinoma by iTRAQ-Based Quantitative Proteomic Analysis

Almost all the patients with hepatocellular carcinoma (HCC) at advanced stage experience pathological changes of chronic liver cirrhosis, which generally leads to moderate ascites. Recognition of novel biomarkers in malignant ascites could be favorable for establishing a diagnosis for the HCC patien...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jinyan, Liang, Rong, Wei, Jiazhang, Ye, Jiaxiang, He, Qian, ChunlingYuan, Ye, Jiazhou, Li, Yongqiang, Liu, Zhihui, Lin, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174818/
https://www.ncbi.nlm.nih.gov/pubmed/30345303
http://dx.doi.org/10.1155/2018/5484976
Descripción
Sumario:Almost all the patients with hepatocellular carcinoma (HCC) at advanced stage experience pathological changes of chronic liver cirrhosis, which generally leads to moderate ascites. Recognition of novel biomarkers in malignant ascites could be favorable for establishing a diagnosis for the HCC patients with ascites, and even predicting prognosis, such as risk of distant metastasis. To distinguish the proteomic profiles of malignant ascites in HCC patients from those with nonmalignant liver cirrhosis, an iTRAQ pipeline was built up to analyze the differentially distributed proteins in the malignant ascites from HCC patients (n=10) and benign ascites from hepatic decompensation (HD) controls (n=9). In total, 112 differentially distributed proteins were identified, of which 69 proteins were upregulated and 43 proteins were downregulated (ratio <0.667 or >1.3, respectively) in the malignant ascites. Moreover, 19 upregulated proteins (including keratin 1 protein and rheumatoid factor RF-IP20, ratio>1.5) and 8 downregulated proteins (including carbonic anhydrase 1, ratio<0.667) were identified from malignant ascites samples. Functional categories analyses indicated that membrane proteins, ion regulation, and amino acid metabolism are implicated in the formation of HCC malignant ascites. Pathways mapping revealed that glycolysis/gluconeogenesis and complement/coagulation cascades are the mostly affected cell life activities in HCC malignant ascites, suggesting the key factors in these pathways such as Enolase-1 and fibrinogen are potential ascitic fluid based biomarkers for diagnosis and prognosis for HCC.