Cargando…
An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping
High-throughput phenotyping has emerged as a powerful method for studying plant biology. Large image-based datasets are generated and analyzed with automated image analysis pipelines. A major challenge associated with these analyses is variation in image quality that can inadvertently bias results....
Autores principales: | Berry, Jeffrey C., Fahlgren, Noah, Pokorny, Alexandria A., Bart, Rebecca S., Veley, Kira M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174877/ https://www.ncbi.nlm.nih.gov/pubmed/30310752 http://dx.doi.org/10.7717/peerj.5727 |
Ejemplares similares
-
High‐throughput profiling and analysis of plant responses over time to abiotic stress
por: Veley, Kira M., et al.
Publicado: (2017) -
PlantCV v2: Image analysis software for high-throughput plant phenotyping
por: Gehan, Malia A., et al.
Publicado: (2017) -
ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses
por: Pavlovikj, Natasha, et al.
Publicado: (2021) -
Multi-constraints based deep learning model for automated segmentation and diagnosis of coronary artery disease in X-ray angiographic images
por: Algarni, Mona, et al.
Publicado: (2022) -
Flavonoid biosynthesis controls fiber color in naturally colored cotton
por: Liu, Hai-Feng, et al.
Publicado: (2018)