Cargando…

Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides

The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized F...

Descripción completa

Detalles Bibliográficos
Autores principales: Benin, Bogdan M., Dirin, Dmitry N., Morad, Viktoriia, Wörle, Michael, Yakunin, Sergii, Rainò, Gabriele, Nazarenko, Olga, Fischer, Markus, Infante, Ivan, Kovalenko, Maksym V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175341/
https://www.ncbi.nlm.nih.gov/pubmed/29999575
http://dx.doi.org/10.1002/anie.201806452
_version_ 1783361485995507712
author Benin, Bogdan M.
Dirin, Dmitry N.
Morad, Viktoriia
Wörle, Michael
Yakunin, Sergii
Rainò, Gabriele
Nazarenko, Olga
Fischer, Markus
Infante, Ivan
Kovalenko, Maksym V.
author_facet Benin, Bogdan M.
Dirin, Dmitry N.
Morad, Viktoriia
Wörle, Michael
Yakunin, Sergii
Rainò, Gabriele
Nazarenko, Olga
Fischer, Markus
Infante, Ivan
Kovalenko, Maksym V.
author_sort Benin, Bogdan M.
collection PubMed
description The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite‐derived zero‐dimensional Sn(II) material Cs(4)SnBr(6) is presented that exhibits room‐temperature broad‐band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs(4−x)A(x)Sn(Br(1−y)I(y))(6) (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self‐trapped exciton emission bands.
format Online
Article
Text
id pubmed-6175341
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-61753412018-10-19 Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides Benin, Bogdan M. Dirin, Dmitry N. Morad, Viktoriia Wörle, Michael Yakunin, Sergii Rainò, Gabriele Nazarenko, Olga Fischer, Markus Infante, Ivan Kovalenko, Maksym V. Angew Chem Int Ed Engl Communications The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite‐derived zero‐dimensional Sn(II) material Cs(4)SnBr(6) is presented that exhibits room‐temperature broad‐band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs(4−x)A(x)Sn(Br(1−y)I(y))(6) (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self‐trapped exciton emission bands. John Wiley and Sons Inc. 2018-07-30 2018-08-27 /pmc/articles/PMC6175341/ /pubmed/29999575 http://dx.doi.org/10.1002/anie.201806452 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Communications
Benin, Bogdan M.
Dirin, Dmitry N.
Morad, Viktoriia
Wörle, Michael
Yakunin, Sergii
Rainò, Gabriele
Nazarenko, Olga
Fischer, Markus
Infante, Ivan
Kovalenko, Maksym V.
Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
title Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
title_full Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
title_fullStr Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
title_full_unstemmed Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
title_short Highly Emissive Self‐Trapped Excitons in Fully Inorganic Zero‐Dimensional Tin Halides
title_sort highly emissive self‐trapped excitons in fully inorganic zero‐dimensional tin halides
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175341/
https://www.ncbi.nlm.nih.gov/pubmed/29999575
http://dx.doi.org/10.1002/anie.201806452
work_keys_str_mv AT beninbogdanm highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT dirindmitryn highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT moradviktoriia highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT worlemichael highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT yakuninsergii highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT rainogabriele highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT nazarenkoolga highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT fischermarkus highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT infanteivan highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides
AT kovalenkomaksymv highlyemissiveselftrappedexcitonsinfullyinorganiczerodimensionaltinhalides