Cargando…

Disruption of TWIST1 translation by 5′ UTR variants in Saethre‐Chotzen syndrome

Saethre‐Chotzen syndrome (SCS), one of the most common forms of syndromic craniosynostosis (premature fusion of the cranial sutures), results from haploinsufficiency of TWIST1, caused by deletions of the entire gene or loss‐of‐function variants within the coding region. To determine whether non‐codi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yan, Koelling, Nils, Fenwick, Aimée L., McGowan, Simon J., Calpena, Eduardo, Wall, Steven A., Smithson, Sarah F., Wilkie, Andrew O.M., Twigg, Stephen R.F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175480/
https://www.ncbi.nlm.nih.gov/pubmed/30040876
http://dx.doi.org/10.1002/humu.23598
Descripción
Sumario:Saethre‐Chotzen syndrome (SCS), one of the most common forms of syndromic craniosynostosis (premature fusion of the cranial sutures), results from haploinsufficiency of TWIST1, caused by deletions of the entire gene or loss‐of‐function variants within the coding region. To determine whether non‐coding variants also contribute to SCS, we screened 14 genetically undiagnosed SCS patients using targeted capture sequencing, and identified novel single nucleotide variants (SNVs) in the 5′ untranslated region (UTR) of TWIST1 in two unrelated SCS cases. We show experimentally that these variants, which create translation start sites in the TWIST1 leader sequence, reduce translation from the main open reading frame (mORF). This is the first demonstration that non‐coding SNVs of TWIST1 can cause SCS, and highlights the importance of screening the 5′ UTR in clinically diagnosed SCS patients without a coding mutation. Similar 5′ UTR variants, particularly of haploinsufficient genes, may represent an under‐ascertained cause of monogenic disease.