Cargando…
Dynamic large-scale network synchronization from perception to action
Sensory-guided actions entail the processing of sensory information, generation of perceptual decisions, and the generation of appropriate actions. Neuronal activity underlying these processes is distributed into sensory, fronto-parietal, and motor brain areas, respectively. How the neuronal process...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175692/ https://www.ncbi.nlm.nih.gov/pubmed/30320293 http://dx.doi.org/10.1162/netn_a_00039 |
_version_ | 1783361552141778944 |
---|---|
author | Hirvonen, Jonni Monto, Simo Wang, Sheng H. Palva, J. Matias Palva, Satu |
author_facet | Hirvonen, Jonni Monto, Simo Wang, Sheng H. Palva, J. Matias Palva, Satu |
author_sort | Hirvonen, Jonni |
collection | PubMed |
description | Sensory-guided actions entail the processing of sensory information, generation of perceptual decisions, and the generation of appropriate actions. Neuronal activity underlying these processes is distributed into sensory, fronto-parietal, and motor brain areas, respectively. How the neuronal processing is coordinated across these brain areas to support functions from perception to action remains unknown. We investigated whether phase synchronization in large-scale networks coordinate these processes. We recorded human cortical activity with magnetoencephalography (MEG) during a task in which weak somatosensory stimuli remained unperceived or were perceived. We then assessed dynamic evolution of phase synchronization in large-scale networks from source-reconstructed MEG data by using advanced analysis approaches combined with graph theory. Here we show that perceiving and reporting of weak somatosensory stimuli is correlated with sustained strengthening of large-scale synchrony concurrently in delta/theta (3–7 Hz) and gamma (40–60 Hz) frequency bands. In a data-driven network localization, we found this synchronization to dynamically connect the task-relevant, that is, the fronto-parietal, sensory, and motor systems. The strength and temporal pattern of interareal synchronization were also correlated with the response times. These data thus show that key brain areas underlying perception, decision-making, and actions are transiently connected by large-scale dynamic phase synchronization in the delta/theta and gamma bands. |
format | Online Article Text |
id | pubmed-6175692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MIT Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61756922018-10-12 Dynamic large-scale network synchronization from perception to action Hirvonen, Jonni Monto, Simo Wang, Sheng H. Palva, J. Matias Palva, Satu Netw Neurosci Research Sensory-guided actions entail the processing of sensory information, generation of perceptual decisions, and the generation of appropriate actions. Neuronal activity underlying these processes is distributed into sensory, fronto-parietal, and motor brain areas, respectively. How the neuronal processing is coordinated across these brain areas to support functions from perception to action remains unknown. We investigated whether phase synchronization in large-scale networks coordinate these processes. We recorded human cortical activity with magnetoencephalography (MEG) during a task in which weak somatosensory stimuli remained unperceived or were perceived. We then assessed dynamic evolution of phase synchronization in large-scale networks from source-reconstructed MEG data by using advanced analysis approaches combined with graph theory. Here we show that perceiving and reporting of weak somatosensory stimuli is correlated with sustained strengthening of large-scale synchrony concurrently in delta/theta (3–7 Hz) and gamma (40–60 Hz) frequency bands. In a data-driven network localization, we found this synchronization to dynamically connect the task-relevant, that is, the fronto-parietal, sensory, and motor systems. The strength and temporal pattern of interareal synchronization were also correlated with the response times. These data thus show that key brain areas underlying perception, decision-making, and actions are transiently connected by large-scale dynamic phase synchronization in the delta/theta and gamma bands. MIT Press 2018-10-01 /pmc/articles/PMC6175692/ /pubmed/30320293 http://dx.doi.org/10.1162/netn_a_00039 Text en © 2018 Massachusetts Institute of Technology http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hirvonen, Jonni Monto, Simo Wang, Sheng H. Palva, J. Matias Palva, Satu Dynamic large-scale network synchronization from perception to action |
title | Dynamic large-scale network synchronization from perception to action |
title_full | Dynamic large-scale network synchronization from perception to action |
title_fullStr | Dynamic large-scale network synchronization from perception to action |
title_full_unstemmed | Dynamic large-scale network synchronization from perception to action |
title_short | Dynamic large-scale network synchronization from perception to action |
title_sort | dynamic large-scale network synchronization from perception to action |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175692/ https://www.ncbi.nlm.nih.gov/pubmed/30320293 http://dx.doi.org/10.1162/netn_a_00039 |
work_keys_str_mv | AT hirvonenjonni dynamiclargescalenetworksynchronizationfromperceptiontoaction AT montosimo dynamiclargescalenetworksynchronizationfromperceptiontoaction AT wangshengh dynamiclargescalenetworksynchronizationfromperceptiontoaction AT palvajmatias dynamiclargescalenetworksynchronizationfromperceptiontoaction AT palvasatu dynamiclargescalenetworksynchronizationfromperceptiontoaction |