Cargando…
Microscale heat transfer and thermal extinction of a wire-grid polarizer
We explore heat transfer and thermal characteristics of a wire-grid polarizer (WGP) on a microscale by investigating the effect of various geometrical parameters such as wire-grid period, height, and a fill factor. The thermal properties arise from heat transfer by light absorption and conduction in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175867/ https://www.ncbi.nlm.nih.gov/pubmed/30297826 http://dx.doi.org/10.1038/s41598-018-33347-5 |
Sumario: | We explore heat transfer and thermal characteristics of a wire-grid polarizer (WGP) on a microscale by investigating the effect of various geometrical parameters such as wire-grid period, height, and a fill factor. The thermal properties arise from heat transfer by light absorption and conduction in wire-grids. Fill factor was found to be the most dominant geometrical parameter. For TM polarized light, a higher fill factor with thicker wire-grids increased the temperature. The local temperature was found to rise up to T(max) = 354.5 K. TE polarization tended to produce lower temperature. Thermal extinction due to polarimetric extinction by a WGP was also evaluated and highest extinction was observed to be 4.78 dB, which represents a temperature difference ΔT = 54.3 °C. We expect the results to be useful for WGPs in polarization-sensitive thermal switching applications. |
---|