Cargando…
Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin
Topoisomerases II (Top2s) are a group of essential enzymes involved in replication, transcription, chromosome condensation, and segregation via altering DNA topology. The mechanism of the Top2s poisons such as etoposide (VP-16) was reported as stabilizing the Top2-DNA complex and engendering permane...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175940/ https://www.ncbi.nlm.nih.gov/pubmed/30297860 http://dx.doi.org/10.1038/s41598-018-33366-2 |
_version_ | 1783361601049460736 |
---|---|
author | Sun, Lin-Yang Zhu, Li-Wen Tang, Ya-Jie |
author_facet | Sun, Lin-Yang Zhu, Li-Wen Tang, Ya-Jie |
author_sort | Sun, Lin-Yang |
collection | PubMed |
description | Topoisomerases II (Top2s) are a group of essential enzymes involved in replication, transcription, chromosome condensation, and segregation via altering DNA topology. The mechanism of the Top2s poisons such as etoposide (VP-16) was reported as stabilizing the Top2-DNA complex and engendering permanent DNA breakage. As the structurally similar compound of VP-16, a novel 4β-sulfur-substituted 4′-demethylepipodophyllotoxin (DMEP) derivative (compound C-Bi) with superior antitumor activity was developed in our previous study. To understand the structural basis of the compound action, the crystal structure (2.54 Å) of human Top2 β-isoform (hTop2β) cleavage complexes stabilized by compound C-Bi was determined. However, compound C-Bi was not visible in the crystal structure. Through the comparison of the structures of hTop2β-DNA-etoposide ternary complex and hTop2β-DNA binary complex, it could be observed that the distance between drug-binding sites Arg503 of the two monomers was 26.62 Å in hTop2β-DNA-etoposide ternary complex and 34.54 Å in hTop2β-DNA binary complex, respectively. Significant twist were observed in the DNA chains of binary complex. It suggested that compound C-Bi played antitumor roles through increasing spacing of hTop2β monomers. The changes in hTop2β structure further caused double changes in the torsional direction and migration distance of the DNA chains, resulting in impeding religation of DNA. |
format | Online Article Text |
id | pubmed-6175940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61759402018-10-12 Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin Sun, Lin-Yang Zhu, Li-Wen Tang, Ya-Jie Sci Rep Article Topoisomerases II (Top2s) are a group of essential enzymes involved in replication, transcription, chromosome condensation, and segregation via altering DNA topology. The mechanism of the Top2s poisons such as etoposide (VP-16) was reported as stabilizing the Top2-DNA complex and engendering permanent DNA breakage. As the structurally similar compound of VP-16, a novel 4β-sulfur-substituted 4′-demethylepipodophyllotoxin (DMEP) derivative (compound C-Bi) with superior antitumor activity was developed in our previous study. To understand the structural basis of the compound action, the crystal structure (2.54 Å) of human Top2 β-isoform (hTop2β) cleavage complexes stabilized by compound C-Bi was determined. However, compound C-Bi was not visible in the crystal structure. Through the comparison of the structures of hTop2β-DNA-etoposide ternary complex and hTop2β-DNA binary complex, it could be observed that the distance between drug-binding sites Arg503 of the two monomers was 26.62 Å in hTop2β-DNA-etoposide ternary complex and 34.54 Å in hTop2β-DNA binary complex, respectively. Significant twist were observed in the DNA chains of binary complex. It suggested that compound C-Bi played antitumor roles through increasing spacing of hTop2β monomers. The changes in hTop2β structure further caused double changes in the torsional direction and migration distance of the DNA chains, resulting in impeding religation of DNA. Nature Publishing Group UK 2018-10-08 /pmc/articles/PMC6175940/ /pubmed/30297860 http://dx.doi.org/10.1038/s41598-018-33366-2 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sun, Lin-Yang Zhu, Li-Wen Tang, Ya-Jie Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
title | Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
title_full | Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
title_fullStr | Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
title_full_unstemmed | Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
title_short | Increasing the distance between two monomers of topoisomerase IIβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
title_sort | increasing the distance between two monomers of topoisomerase iiβ under the action of antitumor agent 4β-sulfur-(benzimidazole) 4′-demethylepipodophyllotoxin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175940/ https://www.ncbi.nlm.nih.gov/pubmed/30297860 http://dx.doi.org/10.1038/s41598-018-33366-2 |
work_keys_str_mv | AT sunlinyang increasingthedistancebetweentwomonomersoftopoisomeraseiibundertheactionofantitumoragent4bsulfurbenzimidazole4demethylepipodophyllotoxin AT zhuliwen increasingthedistancebetweentwomonomersoftopoisomeraseiibundertheactionofantitumoragent4bsulfurbenzimidazole4demethylepipodophyllotoxin AT tangyajie increasingthedistancebetweentwomonomersoftopoisomeraseiibundertheactionofantitumoragent4bsulfurbenzimidazole4demethylepipodophyllotoxin |