Cargando…
A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation
Efficient high-throughput transcriptomics (HTT) tools promise inexpensive, rapid assessment of possible biological consequences of human and environmental exposures to tens of thousands of chemicals in commerce. HTT systems have used relatively small sets of gene expression measurements coupled with...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176017/ https://www.ncbi.nlm.nih.gov/pubmed/30333746 http://dx.doi.org/10.3389/fphar.2018.01072 |
_version_ | 1783361620282441728 |
---|---|
author | Haider, Saad Black, Michael B. Parks, Bethany B. Foley, Briana Wetmore, Barbara A. Andersen, Melvin E. Clewell, Rebecca A. Mansouri, Kamel McMullen, Patrick D. |
author_facet | Haider, Saad Black, Michael B. Parks, Bethany B. Foley, Briana Wetmore, Barbara A. Andersen, Melvin E. Clewell, Rebecca A. Mansouri, Kamel McMullen, Patrick D. |
author_sort | Haider, Saad |
collection | PubMed |
description | Efficient high-throughput transcriptomics (HTT) tools promise inexpensive, rapid assessment of possible biological consequences of human and environmental exposures to tens of thousands of chemicals in commerce. HTT systems have used relatively small sets of gene expression measurements coupled with mathematical prediction methods to estimate genome-wide gene expression and are often trained and validated using pharmaceutical compounds. It is unclear whether these training sets are suitable for general toxicity testing applications and the more diverse chemical space represented by commercial chemicals and environmental contaminants. In this work, we built predictive computational models that inferred whole genome transcriptional profiles from a smaller sample of surrogate genes. The model was trained and validated using a large scale toxicogenomics database with gene expression data from exposure to heterogeneous chemicals from a wide range of classes (the Open TG-GATEs data base). The method of predictor selection was designed to allow high fidelity gene prediction from any pre-existing gene expression data set, regardless of animal species or data measurement platform. Predictive qualitative models were developed with this TG-GATES data that contained gene expression data of human primary hepatocytes with over 941 samples covering 158 compounds. A sequential forward search-based greedy algorithm, combining different fitting approaches and machine learning techniques, was used to find an optimal set of surrogate genes that predicted differential expression changes of the remaining genome. We then used pathway enrichment of up-regulated and down-regulated genes to assess the ability of a limited gene set to determine relevant patterns of tissue response. In addition, we compared prediction performance using the surrogate genes found from our greedy algorithm (referred to as the SV2000) with the landmark genes provided by existing technologies such as L1000 (Genometry) and S1500 (Tox21), finding better predictive performance for the SV2000. The ability of these predictive algorithms to predict pathway level responses is a positive step toward incorporating mode of action (MOA) analysis into the high throughput prioritization and testing of the large number of chemicals in need of safety evaluation. |
format | Online Article Text |
id | pubmed-6176017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61760172018-10-17 A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation Haider, Saad Black, Michael B. Parks, Bethany B. Foley, Briana Wetmore, Barbara A. Andersen, Melvin E. Clewell, Rebecca A. Mansouri, Kamel McMullen, Patrick D. Front Pharmacol Pharmacology Efficient high-throughput transcriptomics (HTT) tools promise inexpensive, rapid assessment of possible biological consequences of human and environmental exposures to tens of thousands of chemicals in commerce. HTT systems have used relatively small sets of gene expression measurements coupled with mathematical prediction methods to estimate genome-wide gene expression and are often trained and validated using pharmaceutical compounds. It is unclear whether these training sets are suitable for general toxicity testing applications and the more diverse chemical space represented by commercial chemicals and environmental contaminants. In this work, we built predictive computational models that inferred whole genome transcriptional profiles from a smaller sample of surrogate genes. The model was trained and validated using a large scale toxicogenomics database with gene expression data from exposure to heterogeneous chemicals from a wide range of classes (the Open TG-GATEs data base). The method of predictor selection was designed to allow high fidelity gene prediction from any pre-existing gene expression data set, regardless of animal species or data measurement platform. Predictive qualitative models were developed with this TG-GATES data that contained gene expression data of human primary hepatocytes with over 941 samples covering 158 compounds. A sequential forward search-based greedy algorithm, combining different fitting approaches and machine learning techniques, was used to find an optimal set of surrogate genes that predicted differential expression changes of the remaining genome. We then used pathway enrichment of up-regulated and down-regulated genes to assess the ability of a limited gene set to determine relevant patterns of tissue response. In addition, we compared prediction performance using the surrogate genes found from our greedy algorithm (referred to as the SV2000) with the landmark genes provided by existing technologies such as L1000 (Genometry) and S1500 (Tox21), finding better predictive performance for the SV2000. The ability of these predictive algorithms to predict pathway level responses is a positive step toward incorporating mode of action (MOA) analysis into the high throughput prioritization and testing of the large number of chemicals in need of safety evaluation. Frontiers Media S.A. 2018-10-02 /pmc/articles/PMC6176017/ /pubmed/30333746 http://dx.doi.org/10.3389/fphar.2018.01072 Text en Copyright © 2018 Haider, Black, Parks, Foley, Wetmore, Andersen, Clewell, Mansouri and McMullen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Haider, Saad Black, Michael B. Parks, Bethany B. Foley, Briana Wetmore, Barbara A. Andersen, Melvin E. Clewell, Rebecca A. Mansouri, Kamel McMullen, Patrick D. A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation |
title | A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation |
title_full | A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation |
title_fullStr | A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation |
title_full_unstemmed | A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation |
title_short | A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation |
title_sort | qualitative modeling approach for whole genome prediction using high-throughput toxicogenomics data and pathway-based validation |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176017/ https://www.ncbi.nlm.nih.gov/pubmed/30333746 http://dx.doi.org/10.3389/fphar.2018.01072 |
work_keys_str_mv | AT haidersaad aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT blackmichaelb aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT parksbethanyb aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT foleybriana aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT wetmorebarbaraa aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT andersenmelvine aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT clewellrebeccaa aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT mansourikamel aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT mcmullenpatrickd aqualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT haidersaad qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT blackmichaelb qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT parksbethanyb qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT foleybriana qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT wetmorebarbaraa qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT andersenmelvine qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT clewellrebeccaa qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT mansourikamel qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation AT mcmullenpatrickd qualitativemodelingapproachforwholegenomepredictionusinghighthroughputtoxicogenomicsdataandpathwaybasedvalidation |