Cargando…

Construction of lncRNA-miRNA-mRNA networks reveals functional lncRNAs in abdominal aortic aneurysm

Abdominal aortic aneurysm (AAA) is one of the most significant causes of morbidity and mortality in populations aged >65 years worldwide. However, the underlying mechanisms of AAA based on the competitive endogenous RNA (ceRNA) hypothesis have remained elusive. In the present study, differently e...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Lu, Hu, Xiaofeng, He, Yangyan, Wu, Ziheng, Li, Donglin, Zhang, Hongkun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176170/
https://www.ncbi.nlm.nih.gov/pubmed/30344676
http://dx.doi.org/10.3892/etm.2018.6690
Descripción
Sumario:Abdominal aortic aneurysm (AAA) is one of the most significant causes of morbidity and mortality in populations aged >65 years worldwide. However, the underlying mechanisms of AAA based on the competitive endogenous RNA (ceRNA) hypothesis have remained elusive. In the present study, differently expressed long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA networks in AAA were constructed by analyzing public datasets, including GSE7084, GSE24194 from rats and that of a previous study. A total of 1,219 mRNAs, 2,093 lncRNAs and 57 miRNAs were identified to differently express in AAA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore the potential roles of differently expressed lncRNAs based on their regulating mRNAs. Based on the ceRNA hypothesis, lncRNA-miRNA-mRNA networks in AAA were, for the first time, constructed at a system-wide level. The present study identified 5 upregulated lncRNAs [nuclear paraspeckle assembly transcript 1, cyclin-dependent kinase inhibitor 2B antisense RNA 1, small Cajal body-specific RNA 10, AC005224.4 and SUMO1/sentrin/SMT3-specific peptidase 3-eukaryotic translation initiation factor 4A1] and the downregulated zinc ribbon domain containing 1 antisense RNA 1 as key lncRNAs in ceRNA networks. To the best of our knowledge, the present study was the first to screen ceRNA networks in AAA. In addition, key lncRNA-mRNA-biological processes analysis indicated that these key lncRNAs were involved in regulating signal transduction, protein amino acid phosphorylation, immune response, transcription, development and cell differentiation. The present study provides novel clues to explore the molecular mechanisms of AAA progression in terms of lncRNA implication.