Cargando…
Using Machine Learning to Predict Synergistic Antimalarial Compound Combinations With Novel Structures
The parasite Plasmodium falciparum is the most lethal species of Plasmodium to cause serious malaria infection in humans, and with resistance developing rapidly novel treatment modalities are currently being sought, one of which being combinations of existing compounds. The discovery of combinations...
Autores principales: | Mason, Daniel J., Eastman, Richard T., Lewis, Richard P. I., Stott, Ian P., Guha, Rajarshi, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176478/ https://www.ncbi.nlm.nih.gov/pubmed/30333748 http://dx.doi.org/10.3389/fphar.2018.01096 |
Ejemplares similares
-
A systematic and prospectively validated approach for identifying synergistic drug combinations against malaria
por: KalantarMotamedi, Yasaman, et al.
Publicado: (2018) -
Synergy Maps: exploring compound combinations using network-based visualization
por: Lewis, Richard, et al.
Publicado: (2015) -
High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations
por: Mott, Bryan T., et al.
Publicado: (2015) -
Prediction of Synergistic Antibiotic Combinations by Graph Learning
por: Lv, Ji, et al.
Publicado: (2022) -
Antimalarial and antitumour activities of the steroidal quinone-methide celastrol and its combinations with artemiside, artemisone and methylene blue
por: Ng, Jerome P. L., et al.
Publicado: (2022)