Cargando…
Global Epileptic Seizure Identification With Affinity Propagation Clustering Partition Mutual Information Using Cross-Layer Fully Connected Neural Network
A longstanding challenge in epilepsy research and practice is the need to classify synchronization patterns hidden in multivariate electroencephalography (EEG) data that is routinely superimposed with intensive noise. It is essential to select a suitable feature extraction method to achieve high rec...
Autores principales: | Wang, Fengqin, Ke, Hengjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176510/ https://www.ncbi.nlm.nih.gov/pubmed/30333740 http://dx.doi.org/10.3389/fnhum.2018.00396 |
Ejemplares similares
-
Markov clustering versus affinity propagation for the partitioning of protein interaction graphs
por: Vlasblom, James, et al.
Publicado: (2009) -
Combining affinity propagation clustering and mutual information network to investigate key genes in fibroid
por: Chen, Qian-Song, et al.
Publicado: (2017) -
Using the connectome to predict epileptic seizure propagation in the human brain
por: Proix, Timothée, et al.
Publicado: (2015) -
Spatiotemporal evolution of epileptic seizure based on mutual information and dynamic brain network
por: Ma, Mengnan, et al.
Publicado: (2021) -
The Effect of Anti-seizure Medications on the Propagation of Epileptic Activity: A Review
por: Khateb, Mohamed, et al.
Publicado: (2021)