Cargando…
Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats
Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mecha...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176656/ https://www.ncbi.nlm.nih.gov/pubmed/30333717 http://dx.doi.org/10.3389/fnins.2018.00653 |
_version_ | 1783361734580371456 |
---|---|
author | Moreira-Silva, Daniel Carrettiero, Daniel C. Oliveira, Adriele S. A. Rodrigues, Samanta dos Santos-Lopes, Joyce Canas, Paula M. Cunha, Rodrigo A. Almeida, Maria C. Ferreira, Tatiana L. |
author_facet | Moreira-Silva, Daniel Carrettiero, Daniel C. Oliveira, Adriele S. A. Rodrigues, Samanta dos Santos-Lopes, Joyce Canas, Paula M. Cunha, Rodrigo A. Almeida, Maria C. Ferreira, Tatiana L. |
author_sort | Moreira-Silva, Daniel |
collection | PubMed |
description | Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation – one of the hallmarks of AD –, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB(1)) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ). Our hypothesis is that AEA could interact with HSP70, modulating the level of p-tau and synaptic proteins, preventing STZ-induced cognitive impairments. Thirty days after receiving bilateral icv injections of AEA or STZ or both, the cognitive performance of adult male Wistar rats was evaluated in the object recognition test, by the escape latency in the elevated plus maze (EPM), by the tone and context fear conditioning as well as in prepulse inhibition tests. Subsequently, the animals were euthanized and their brains were removed for histological analysis or for protein quantification by Western Blotting. The behavioral results showed that STZ impaired recognition, plus maze and tone fear memories but did not affect contextual fear memory and prepulse inhibition. Moreover, AEA prevented recognition and non-associative emotional memory impairments induced by STZ, but did not influence tone fear conditioning. STZ increased the brain ventricular area and this enlargement was prevented by AEA. Additionally, STZ reduced the levels of p-tau (Ser199/202) and increased p-tau (Ser396), although AEA did not affect these alterations. HSP70 was found diminished only by STZ, while BAG2 levels were decreased by STZ and AEA. Synaptophysin, syntaxin and CB(1) receptor levels were reduced by STZ, but only syntaxin was recovered by AEA. Altogether, albeit AEA failed to modify some AD-like neurochemical alterations, it partially prevented STZ-induced cognitive impairments, changes in synaptic markers and ventricle enlargement. This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD. |
format | Online Article Text |
id | pubmed-6176656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61766562018-10-17 Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats Moreira-Silva, Daniel Carrettiero, Daniel C. Oliveira, Adriele S. A. Rodrigues, Samanta dos Santos-Lopes, Joyce Canas, Paula M. Cunha, Rodrigo A. Almeida, Maria C. Ferreira, Tatiana L. Front Neurosci Neuroscience Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation – one of the hallmarks of AD –, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB(1)) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ). Our hypothesis is that AEA could interact with HSP70, modulating the level of p-tau and synaptic proteins, preventing STZ-induced cognitive impairments. Thirty days after receiving bilateral icv injections of AEA or STZ or both, the cognitive performance of adult male Wistar rats was evaluated in the object recognition test, by the escape latency in the elevated plus maze (EPM), by the tone and context fear conditioning as well as in prepulse inhibition tests. Subsequently, the animals were euthanized and their brains were removed for histological analysis or for protein quantification by Western Blotting. The behavioral results showed that STZ impaired recognition, plus maze and tone fear memories but did not affect contextual fear memory and prepulse inhibition. Moreover, AEA prevented recognition and non-associative emotional memory impairments induced by STZ, but did not influence tone fear conditioning. STZ increased the brain ventricular area and this enlargement was prevented by AEA. Additionally, STZ reduced the levels of p-tau (Ser199/202) and increased p-tau (Ser396), although AEA did not affect these alterations. HSP70 was found diminished only by STZ, while BAG2 levels were decreased by STZ and AEA. Synaptophysin, syntaxin and CB(1) receptor levels were reduced by STZ, but only syntaxin was recovered by AEA. Altogether, albeit AEA failed to modify some AD-like neurochemical alterations, it partially prevented STZ-induced cognitive impairments, changes in synaptic markers and ventricle enlargement. This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD. Frontiers Media S.A. 2018-09-21 /pmc/articles/PMC6176656/ /pubmed/30333717 http://dx.doi.org/10.3389/fnins.2018.00653 Text en Copyright © 2018 Moreira-Silva, Carrettiero, Oliveira, Rodrigues, dos Santos-Lopes, Canas, Cunha, Almeida and Ferreira. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Moreira-Silva, Daniel Carrettiero, Daniel C. Oliveira, Adriele S. A. Rodrigues, Samanta dos Santos-Lopes, Joyce Canas, Paula M. Cunha, Rodrigo A. Almeida, Maria C. Ferreira, Tatiana L. Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats |
title | Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats |
title_full | Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats |
title_fullStr | Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats |
title_full_unstemmed | Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats |
title_short | Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats |
title_sort | anandamide effects in a streptozotocin-induced alzheimer’s disease-like sporadic dementia in rats |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176656/ https://www.ncbi.nlm.nih.gov/pubmed/30333717 http://dx.doi.org/10.3389/fnins.2018.00653 |
work_keys_str_mv | AT moreirasilvadaniel anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT carrettierodanielc anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT oliveiraadrielesa anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT rodriguessamanta anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT dossantoslopesjoyce anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT canaspaulam anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT cunharodrigoa anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT almeidamariac anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats AT ferreiratatianal anandamideeffectsinastreptozotocininducedalzheimersdiseaselikesporadicdementiainrats |