Cargando…
Learning Subject-Specific Directed Acyclic Graphs With Mixed Effects Structural Equation Models From Observational Data
The identification of causal relationships between random variables from large-scale observational data using directed acyclic graphs (DAG) is highly challenging. We propose a new mixed-effects structural equation model (mSEM) framework to estimate subject-specific DAGs, where we represent joint dis...
Autores principales: | Li, Xiang, Xie, Shanghong, McColgan, Peter, Tabrizi, Sarah J., Scahill, Rachael I., Zeng, Donglin, Wang, Yuanjia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176748/ https://www.ncbi.nlm.nih.gov/pubmed/30333854 http://dx.doi.org/10.3389/fgene.2018.00430 |
Ejemplares similares
-
Inferring Regulatory Networks From Mixed Observational Data Using Directed Acyclic Graphs
por: Zhong, Wujuan, et al.
Publicado: (2020) -
Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations
por: Konigorski, Stefan, et al.
Publicado: (2017) -
A directed acyclic graph for interactions
por: Nilsson, Anton, et al.
Publicado: (2020) -
Reducing bias through directed acyclic graphs
por: Shrier, Ian, et al.
Publicado: (2008) -
Phasertng: directed acyclic graphs for crystallographic phasing
por: McCoy, Airlie J., et al.
Publicado: (2021)