Cargando…
Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice
Obesity is one of the most significant risk factors for knee osteoarthritis. However, therapeutic strategies to prevent or treat obesity-associated osteoarthritis are limited because of uncertainty about the etiology of disease, particularly with regard to metabolic factors. High-fat-diet-induced ob...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176996/ https://www.ncbi.nlm.nih.gov/pubmed/30018076 http://dx.doi.org/10.1242/dmm.034827 |
_version_ | 1783361783908532224 |
---|---|
author | Donovan, Elise L. Lopes, Erika Barboza Prado Batushansky, Albert Kinter, Mike Griffin, Timothy M. |
author_facet | Donovan, Elise L. Lopes, Erika Barboza Prado Batushansky, Albert Kinter, Mike Griffin, Timothy M. |
author_sort | Donovan, Elise L. |
collection | PubMed |
description | Obesity is one of the most significant risk factors for knee osteoarthritis. However, therapeutic strategies to prevent or treat obesity-associated osteoarthritis are limited because of uncertainty about the etiology of disease, particularly with regard to metabolic factors. High-fat-diet-induced obese mice have become a widely used model for testing hypotheses about how obesity increases the risk of osteoarthritis, but progress has been limited by variation in disease severity, with some reports concluding that dietary treatment alone is insufficient to induce osteoarthritis in mice. We hypothesized that increased sucrose content of typical low-fat control diets contributes to osteoarthritis pathology and thus alters outcomes when evaluating the effects of a high-fat diet. We tested this hypothesis in male C57BL/6J mice by comparing the effects of purified diets that independently varied sucrose or fat content from 6 to 26 weeks of age. Outcomes included osteoarthritis pathology, serum metabolites, and cartilage gene and protein changes associated with cellular metabolism and stress-response pathways. We found that the relative content of sucrose versus cornstarch in low-fat iso-caloric purified diets caused substantial differences in serum metabolites, joint pathology, and cartilage metabolic and stress-response pathways, despite no differences in body mass or body fat. We also found that higher dietary fat increased fatty acid metabolic enzymes in cartilage. The findings indicate that the choice of control diets should be carefully considered in mouse osteoarthritis studies. Our study also indicates that altered cartilage metabolism might be a contributing factor to how diet and obesity increase the risk of osteoarthritis. |
format | Online Article Text |
id | pubmed-6176996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-61769962018-10-16 Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice Donovan, Elise L. Lopes, Erika Barboza Prado Batushansky, Albert Kinter, Mike Griffin, Timothy M. Dis Model Mech Research Article Obesity is one of the most significant risk factors for knee osteoarthritis. However, therapeutic strategies to prevent or treat obesity-associated osteoarthritis are limited because of uncertainty about the etiology of disease, particularly with regard to metabolic factors. High-fat-diet-induced obese mice have become a widely used model for testing hypotheses about how obesity increases the risk of osteoarthritis, but progress has been limited by variation in disease severity, with some reports concluding that dietary treatment alone is insufficient to induce osteoarthritis in mice. We hypothesized that increased sucrose content of typical low-fat control diets contributes to osteoarthritis pathology and thus alters outcomes when evaluating the effects of a high-fat diet. We tested this hypothesis in male C57BL/6J mice by comparing the effects of purified diets that independently varied sucrose or fat content from 6 to 26 weeks of age. Outcomes included osteoarthritis pathology, serum metabolites, and cartilage gene and protein changes associated with cellular metabolism and stress-response pathways. We found that the relative content of sucrose versus cornstarch in low-fat iso-caloric purified diets caused substantial differences in serum metabolites, joint pathology, and cartilage metabolic and stress-response pathways, despite no differences in body mass or body fat. We also found that higher dietary fat increased fatty acid metabolic enzymes in cartilage. The findings indicate that the choice of control diets should be carefully considered in mouse osteoarthritis studies. Our study also indicates that altered cartilage metabolism might be a contributing factor to how diet and obesity increase the risk of osteoarthritis. The Company of Biologists Ltd 2018-09-01 2018-08-31 /pmc/articles/PMC6176996/ /pubmed/30018076 http://dx.doi.org/10.1242/dmm.034827 Text en © 2018. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Donovan, Elise L. Lopes, Erika Barboza Prado Batushansky, Albert Kinter, Mike Griffin, Timothy M. Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
title | Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
title_full | Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
title_fullStr | Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
title_full_unstemmed | Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
title_short | Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
title_sort | independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176996/ https://www.ncbi.nlm.nih.gov/pubmed/30018076 http://dx.doi.org/10.1242/dmm.034827 |
work_keys_str_mv | AT donovanelisel independenteffectsofdietaryfatandsucrosecontentonchondrocytemetabolismandosteoarthritispathologyinmice AT lopeserikabarbozaprado independenteffectsofdietaryfatandsucrosecontentonchondrocytemetabolismandosteoarthritispathologyinmice AT batushanskyalbert independenteffectsofdietaryfatandsucrosecontentonchondrocytemetabolismandosteoarthritispathologyinmice AT kintermike independenteffectsofdietaryfatandsucrosecontentonchondrocytemetabolismandosteoarthritispathologyinmice AT griffintimothym independenteffectsofdietaryfatandsucrosecontentonchondrocytemetabolismandosteoarthritispathologyinmice |