Cargando…

Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone

Plant litter decomposition is an important biogeochemical process in terrestrial ecosystems. Although climate and substrate quality controls over litter decomposition are reasonably well understood, their impacts on lignocellulose degradation and lignocellulolytic enzymes remain elusive. Here, the d...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yamei, Liu, Yang, Zhang, Jian, Yang, Wanqin, He, Runlian, Deng, Changchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177423/
https://www.ncbi.nlm.nih.gov/pubmed/30301949
http://dx.doi.org/10.1038/s41598-018-33186-4
Descripción
Sumario:Plant litter decomposition is an important biogeochemical process in terrestrial ecosystems. Although climate and substrate quality controls over litter decomposition are reasonably well understood, their impacts on lignocellulose degradation and lignocellulolytic enzymes remain elusive. Here, the decomposition of three leaf litters derived from Salix paraplesia (SP), Deyeuxia scabrescens (DS), and Ajuga ovalifolia (AO), was studied across an alpine forest-tundra ecotone during one snow-covered season with the objective of distinguishing between the effects of microclimate and litter quality on litter decomposition rates and lignocellulolytic enzymes. The results showed that both microclimate and litter quality affected lignocellulose degradation rates and lignocellulolytic enzyme activities; however, microclimate factors had the greater effects. Interestingly, freeze-thaw cycles and moisture were the predominant factors explaining the variations in decomposition rate and enzyme activities. Higher cellulose degradation rates were associated with higher cellulose concentrations. Cellulolytic enzymes had a greater effect on litter decomposition than did ligninolytic enzymes at the early decomposition stage. Litter decomposition and enzyme activities should be given more attention under global climate change, as the direction and magnitude of changes in microclimate factors and litter quality could strongly influence the nutrient cycling and energy fluxes of alpine ecosystems.